
An overview of the girafe package

J. Toedling, C. Ciaudo, O. Voinnet, E. Heard, E. Barillot

April 15, 2025

1 Introduction

The intent of package girafe is to facilitate the functional exploration of the alignments of multiple
reads1 from next-generation sequencing (NGS) data to a genome.

It extends the functionality of the Bioconductor (Gentleman et al., 2004) packages ShortRead (Mor-
gan et al., 2009) and genomeIntervals.

> library("girafe")

> library("RColorBrewer")

If you use girafe for analysing your data, please cite:

� J Toedling, C Ciaudo, O Voinnet, E Heard and E Barillot (2010) girafe � an R/Bioconductor
package for functional exploration of aligned next-generation sequencing reads. Bioinformatics,
26(22):2902-3.

Getting help

If possible, please send questions about girafe to the Bioconductor mailing list.
See http://www.bioconductor.org/docs/mailList.html
Their archive of questions and responses may prove helpful, too.

2 Work�ow

We present the functionality of the package girafe using example data that was downloaded from
the Gene Expression Omnibus (GEO) database (Edgar et al., 2002, GSE10364). The example data
are Solexa reads of 26 nt length derived from small RNA pro�ling of mouse oocytes. The data has
previously been described in Tam et al. (2008).

1The package has been developed for analysing single-end reads (fragment libraries) and does not support mate-pair
reads yet.

1

http://www.bioconductor.org/docs/mailList.html

> exDir <- system.file("extdata", package="girafe")

> ### load object describing annotated mouse genome features:

> load(file.path(exDir, "mgi_gi.RData"))

2.1 Adapter trimming

We load reads that include parts of the adapter sequence.

> ra23.wa <- readFastq(dirPath=exDir, pattern=

+ "aravinSRNA_23_plus_adapter_excerpt.fastq")

> show(ra23.wa)

class: ShortReadQ

length: 1000 reads; width: 26 cycles

To removing adapter sequences, we use the function trimAdapter, which relies on the pairwiseAlignment
function from the pwalign package. The adapter sequence was obtained from the GEO page of the
data.

> adapter <- "CTGTAGGCACCATCAAT"

> ra23.na <- trimAdapter(ra23.wa, adapter)

> show(ra23.na)

class: ShortReadQ

length: 1000 reads; width: 23 cycles

2.2 Importing aligned reads

The reads have been mapped to the mouse genome (assembly mm9) using the alignment tool Bowtie
alignment tool (Langmead et al., 2009).

The resulting tab-delimited map �le can be read into an object of class AlignedRead using the function
readAligned. Both, this class and this function, are de�ned in the Bioconductor package ShortRead .

> exA <- readAligned(dirPath=exDir, type="Bowtie",

+ pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

> show(exA)

class: AlignedRead

length: 1689 reads; width: 23 cycles

chromosome: chr14 chr17 ... chr3 chr14

2

position: 115443405 13011859 ... 68813840 62250772

strand: + + ... + -

alignQuality: NumericQuality

alignData varLabels: similar mismatch

The object of class AlignedRead can be converted into an object of class AlignedGenomeIntervals,
which is the main class of the girafe package.

> exAI <- as(exA, "AlignedGenomeIntervals")

> organism(exAI) <- "Mm"

For alignments in BAM format (Li et al., 2009), there is an alternative way of importing the data. The
function agiFromBam can be used to directly create AlignedGenomeIntervals objects from indexed
and sorted BAM �les, making use of functionalities in the Rsamtools package.

2.3 Exploring the aligned reads

> show(exAI)

1,286 genome intervals with 1,689 aligned reads on 22 chromosome(s).

Organism: Mm

Which chromosomes are the intervals located on?

> table(seqnames(exAI))

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2 chr3

112 50 60 53 65 74 59 48 47 43 19 87 62

chr4 chr5 chr6 chr7 chr8 chr9 chrMT chrX chrY

57 52 82 51 57 69 5 132 2

A subset of the intervals on a speci�c chromosome can be obtained using subsetting via '['.

> detail(exAI[seqnames(exAI)=="chrMT"])

start end seq_name strand reads matches sequence

1 964 986 chrMT + 1 1 GTTTATGAGAGGAGATAAGTTGT

2 11613 11635 chrMT + 10 2 AAGAAAGATTGCAAGAACTGCTA

3 11613 11635 chrMT + 1 2 AAGCAAGATTGCAAGAACTGCTA

4 11613 11635 chrMT + 1 2 AAGAACGATTGCAAGAACTGCTA

5 11613 11635 chrMT + 1 3 AAGAAAGATTGCAAGAACTGTTA

3

Finally, what is the number of aligned reads per chromosome?

> summary(exAI)

Number of aligned reads per chromosome:

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2 chr3

139 51 105 56 83 131 68 61 48 44 19 106 107

chr4 chr5 chr6 chr7 chr8 chr9 chrMT chrX chrY

61 52 107 57 70 102 14 206 2

2.4 Processing the aligned intervals

Sometimes, users may wish to combine certain aligned intervals. One intention could be to combine
aligned reads at exactly the same position, which only di�er in their sequence due to sequencing
errors. Another objective could be to combine overlapping short reads that may be (degradation)
products of the same primary transcript. The function reduce combines a set of aligned intervals
into a single aligned interval, if the intervals:

� are on the same strand,

� are overlapping (or contained in each other) or directly adjacent to each other AND

� have the same read match speci�city (see below)

Read match speci�city By the read match speci�city r(Ii) of an interval Ii, we refer to the total
number of valid alignments of reads that have been aligned to Ii, i.e. the total numbers of intervals
with the same reads aligned in the whole genome (or other set of reference sequences). If r(Ii) = 1,
the reads that were aligned to the interval Ii have no other valid alignments in the whole genome, i.e.
the interval Ii is the unique match position of these reads. If r(Ii) = 2, the reads that were aligned
to the interval Ii have exactly one other valid alignment to another interval Ij , j ̸= i. The match
speci�city is stored in the matches slot of objects of the class AlignedGenomeIntervals.

We �rst demonstrate the reduce using a toy example data object.

> D <- AlignedGenomeIntervals(

+ start=c(1,3,4,5,8,10,11), end=c(5,5,6,8,9,11,13),

+ chromosome=rep(c("chr1","chr2","chr3"), c(2,2,3)),

+ strand=c("-","-","+","+","+","+","+"),

+ sequence=c("ACATT","ACA","CGT","GTAA","AG","CT","TTT"),

+ reads=rep(1,7), matches=c(rep(1,6),3))

> detail(D)

start end seq_name strand reads matches sequence

1 1 5 chr1 - 1 1 ACATT

2 3 5 chr1 - 1 1 ACA

4

3 4 6 chr2 + 1 1 CGT

4 5 8 chr2 + 1 1 GTAA

5 8 9 chr3 + 1 1 AG

6 10 11 chr3 + 1 1 CT

7 11 13 chr3 + 1 3 TTT

Calling the reduce method on these example data results in the following:

> detail(reduce(D))

start end seq_name strand reads matches sequence

1 1 5 chr1 - 2 1 ACATT

2 4 8 chr2 + 2 1 CGTAA

3 8 11 chr3 + 2 1 AGCT

4 11 13 chr3 + 1 3 TTT

Note that the two last intervals still show overlap. However, the last interval is a non-unique match
position of the respective reads (matches= 3), in contrast to the other intervals.

Here is another example using the data introduced above.

> S <- exAI[seqnames(exAI)=="chrX" & matches(exAI)==1L & exAI[,1]>1e8]

> detail(S)

start end seq_name strand reads matches sequence

1 100768450 100768472 chrX - 1 1 ATATAATACAACCTGCTAACTGT

2 101311567 101311589 chrX - 18 1 TGAGGTTGGTGTACTGTGTGTGG

3 101311567 101311589 chrX - 12 1 TGAGGTTGGTGTACTGTGTGTGA

4 101311567 101311589 chrX - 2 1 TGAGGTTGGTGTACTGTGTGTGT

5 101311567 101311589 chrX - 1 1 TGACGTTGGTGTACTGTGTGTGA

6 101311567 101311589 chrX - 1 1 TGAGGTTGGTGTACTGTGTGCGG

7 148346896 148346918 chrX + 4 1 TGAGGTAGTAGATTGTATAGTTT

Calling the reduce method on these data leads to the following result:

> detail(reduce(S))

start end seq_name strand reads matches sequence

1 100768450 100768472 chrX - 1 1 ATATAATACAACCTGCTAACTGT

2 101311567 101311589 chrX - 34 1 TGAGGTTGGTGTACTGTGTGTGG

3 148346896 148346918 chrX + 4 1 TGAGGTAGTAGATTGTATAGTTT

5

Notice that the reads that match the same segment of the X chromosome di�er in their last base.
However, since most of the reads have a 'G' as �nal letter, the combined aligned interval als has a
'G' as the last letter.

The additional argument method="exact" can be speci�ed if you want to solely combine intervals
that have exactly the same start and stop position (but may have reads of slightly di�erent sequence
aligned to them). Consider the following example:

> S2 <- exAI[seqnames(exAI)=="chr11" & matches(exAI)==1L & exAI[,1]>8e7]

> detail(S2)

start end seq_name strand reads matches sequence

1 86397621 86397643 chr11 - 20 1 TAGCTTATCAGACTGATGTTTAC

2 86397621 86397643 chr11 - 1 1 TAGATTATCAGACTGATGTTTAC

3 86397621 86397643 chr11 - 2 1 TAGCTTATCAGACTGATGTTCAC

4 88515338 88515360 chr11 - 1 1 GGTGCAGGGAGCGCCAGTGTCTC

5 96178500 96178522 chr11 + 2 1 TACCCTGTAGATCCGAATTTTTG

6 96178501 96178523 chr11 + 1 1 ACCCTGTAGATCCGAATTTGTGA

7 108873196 108873218 chr11 - 1 1 AGTGCGGTAACGCGACCGCTACC

> detail(reduce(S2, method="exact"))

start end seq_name strand reads matches sequence

1 86397621 86397643 chr11 - 23 1 TAGCTTATCAGACTGATGTTTAC

2 88515338 88515360 chr11 - 1 1 GGTGCAGGGAGCGCCAGTGTCTC

3 96178500 96178522 chr11 + 2 1 TACCCTGTAGATCCGAATTTTTG

4 96178501 96178523 chr11 + 1 1 ACCCTGTAGATCCGAATTTGTGA

5 108873196 108873218 chr11 - 1 1 AGTGCGGTAACGCGACCGCTACC

Notice that the 6th aligned interval in S2 is only shifted by 1 nt from the 5th one. By default, the func-
tion reduce would merge them into one aligned genome interval. However, when method="exact" is
speci�ed, these two intervals are not merged since they are not at exactly the same position. There
are additional methods for restricting the merging to intervals with the same 5'- and 3'-ends (specify
method="same5" and method="same3", respectively).

2.5 Visualising the aligned genome intervals

The package girafe contains functions for visualising genomic regions with aligned reads.

> plot(exAI, mgi.gi, chr="chrX", start=50400000,

+ end=50410000, show="minus")

See the result in Figure 1.

6

30

25

20

15

10

5

0

R
ea

ds
 o

n
C

ric
k

st
ra

nd

Mir450b
Mir450−1

Mir450−2
Mir542 Mir351 Mir503

Mir322

50400000 50401000 50402000 50403000 50404000 50405000 50406000 50407000 50408000 50409000 50410000

Chromosome chrX coordinate [bp]

Figure 1: A 10-kb region on the mouse X chromosome. Reads aligned to the Watson strand in this

region would be shown above the chromosome coordinate axis with the annotation of genome elements

in this region, while reads aligned to the Crick strand are shown below. In the region shown, there are

only intervals with aligned reads on the Crick strand, and these four intervals overlap with annotated

microRNA positions.

Note that the annotation of genome elements (as shown in Figure 1) has to be supplied to the function.
Here the object mgi.gi contains most annotated genes and ncRNAs for the mouse genome (assembly:
mm9). This object has been created beforehand2 and it is of class Genome_intervals_stranded , a
class de�ned in package genomeIntervals .

2.6 Summarising the data using sliding windows

The data can be searched for regions of de�ned interest using a sliding-window approach implemented
in the function perWindow. For each window, the number of intervals with aligned reads, the total
number of reads aligned, the number of unique reads aligned, the fraction of intervals on the Plus-
strand, and the higher number of aligned reads at a single interval within the window are reported.

> exPX <- perWindow(exAI, chr="chrX", winsize=1e5, step=0.5e5)

> head(exPX[order(exPX$n.overlap, decreasing=TRUE),])

chr start end n.overlap n.reads n.unique frac.plus max.reads

942 chrX 50341103 50441102 18 55 18 0 28

2See the script prepareAnnotation.R in the package scripts directory for an example of how to create such an
object.

7

943 chrX 50391103 50491102 18 55 18 0 28

1960 chrX 101241103 101341102 5 34 5 0 18

1961 chrX 101291103 101391102 5 34 5 0 18

1216 chrX 64041103 64141102 4 5 4 0 2

1215 chrX 63991103 64091102 3 4 3 0 2

first last

942 50401220 50407226

943 50401220 50407226

1960 101311567 101311589

1961 101311567 101311589

1216 64049984 64092296

1215 64049984 64067192

2.7 Exporting the data

The package girafe also contains methods for exporting the data into tab-delimited text �les, which
can be uploaded to the UCSC genome browser3 as 'custom tracks'.

Currently, there are methods for exporting the data in 'bed' format and 'bedGraph' format, either
writing intervals from both strands into one �le or into two separate �les. Details about these track
formats can be found at the UCSC genome browser web pages.

> export(exAI, con="export.bed",

+ format="bed", name="example_reads",

+ description="Example reads",

+ color="100,100,255", visibility="pack")

Additional arguments to the export function, besides object, con, and format, are treated as at-
tributes for the track de�nition line, which speci�es details concerning how the data should be
visualised in the genome browser.

Users may also wish to consult the Bioconductor package rtracklayer for data transfer and direct
interaction between R and the UCSC genome browser.

2.8 Overlap with annotated genome features

Next, we determine the degree of overlap of the aligned reads with annotated genomic elements. In
this example, the annotated genome elements are provided as an object of classGenome_intervals_stranded4.
This objects needs to be created beforehand. See the script prepareAnnotation.R in the package
scripts directory5 for an example of how to create such an object.

3http://genome.ucsc.edu
4Objects of class Genome_intervals and AlignedGenomeIntervals are also allowed.
5system.file("scripts", package="girafe")

8

http://genome.ucsc.edu

> exOv <- interval_overlap(exAI, mgi.gi)

How many elements do read match positions generally overlap?

> table(listLen(exOv))

0 1 2 12

815 340 130 1

What are the 12 elements overlapped by a single match position?

> mgi.gi$ID[exOv[[which.max(listLen(exOv))]]]

[1] "Pcdha1" "Pcdha2" "Pcdha3" "Pcdha4" "Pcdha5" "Pcdha6" "Pcdha7"

[8] "Pcdha8" "Pcdha9" "Pcdha10" "Pcdha11" "Pcdha12"

And in general, what kinds of annotated genome elements are overlapped by reads?

> (tabOv <- table(as.character(mgi.gi$type)[unlist(exOv)]))

gene lincRNA miRNA ncRNA pseudogene rRNA snoRNA

238 15 297 19 28 10 1

tRNA

4

We display these overlap classes using a pie chart.

> my.cols <- brewer.pal(length(tabOv), "Set3")

> pie(tabOv, col=my.cols, radius=0.88)

See the result in Figure 2.

Note that function interval.overlap only determines whether two intervals are overlapping by at
least one base. For restricting the result to intervals overlapping by at least a certain number of
bases or by a fraction of the interval's length, see the function fracOverlap.

9

gene

lincRNA

miRNA

ncRNA

pseudogene

rRNA
snoRNAtRNA

Figure 2: Pie chart showing what kinds of genome elements are overlapped by aligned reads. Note that

the proportions of the pie chart are given by the proportions among all annotated genome elements

that have ≥ 1 reads mapped to them and not by the total numbers of reads mapped to elements of that

class, in which case the proportion of the miRNA class would be signi�cantly larger.

3 Memory usage

At the moment, girafe and the packages that it depends on, retain all the information concerning
the read alignments in memory. This allows quick access to and swift operations on the data, but
may limit the package's usability on machines with low amounts of RAM.

The step with the highest RAM requirements is importing the alignments and saving them as ob-
jects of the AlignedRead class using the functionality in package ShortRead . Usually, objects of
the AlignedGenomeIntervals class are created starting from AlignedRead objects and the Aligne-

dRead objects can safely be discarded after this step. Since the data is summarised in that pro-
cess, AlignedGenomeIntervals objects require about 10�100 times less memory than the original
AlignedRead object6. We recommend that the import of the alignments and the generation of the
AlignedGenomeIntervals are performed using a separate script which only needs to be called once on
a machine with su�cient RAM.

6e.g., an AlignedRead object for holding 106 reads of length 36 bp aligned to the mouse reference genome occupies
about 1.4 Gb in RAM but is processed into an AlignedGenomeIntervals object of size 66.7 Mb

10

A suggestion for limiting memory usage is to perform the read alignments and import of the results
in batches of a few million reads each. The batch-wise result AlignedGenomeIntervals objects can
later be combined using the basic R function �c�, the standard way of combining objects, optionally
followed by calls of the reduce function.

For alignments in SAM/BAM format, the Samtools software suite (Li et al., 2009) as well as the
Bioconductor package Rsamtools allow the user to access and import only selected subsets of the
data, which also leads to a lower memory footprint. For details, please refer to the documentation
of these packages.

Finally, while the processing ofAlignedRead objects is the principal way of generatingAlignedGenomeIn-

tervals objects, there is also a convenience function called
AlignedGenomeIntervals, which can be used to create these objects from simpler objects in the
work space, such as data read in using basic R functions such as scan. This convenience function
may be easier to use for importing and processing the data in manageable chunks.

When following these suggestions, most operations with the girafe package should be possible on
a machine with 4 Gb of RAM, and we have not so far encountered a situation that requires more
than 12 Gb (state as of the end of 2009). However, increased throughput of sequencing machines
and longer reads will lead to increased memory requirements. Future developments of this and
other NGS-related Bioconductor packages will therefore likely concern ways to reduce the memory
footprint. One idea is to make use of packages like � , which provide ways of swapping data from
RAM to �at �les on the hard disk, while still allowing fast and direct access to the data.

4 A word about speed

For improving the run time on machines with multiple processors, some of the functions in the
girafe package have been implemented to make use of the functionality in the parallel package. If
parallel has been attached and initialised before calling these functions, the functions will make use
of mclapply instead of the normal lapply function. The number of cores to be used in parallel is
determined by the mc.cores option (see the example below).

For example, if parallel is functional on a given system7, there should be an obvious speed improve-
ment in the following code example.

> library("parallel")

> options("mc.cores"=4) # adjust to your machine

> exAI.R <- reduce(exAI, mem.friendly=TRUE)

5 Links to other Bioconductor packages

The girafe package is mostly built upon the interval notation and implementation provided by the
packages intervals and genomeIntervals. Functions from the ShortRead package (Morgan et al.,

7The mclapply function currently does not support Windows operating systems.

11

2009) are used for importing the data. Biostrings and pwalign provide help for working with the
read nucleotide sequences. girafe also makes limited use of the Rle and IRanges classes de�ned in the
IRanges package. Furthermore, the data can be converted between object classes de�ned in girafe

and IRanges.

We note that many of the interval operations in girafe can also be performed using classes and
functions de�ned in the IRanges package. However, the scope of the packages is slightly di�erent.
While IRanges is meant to be a generic infrastructure package of the Bioconductor project, the aim
of girafe is to provide a single, comparatively lightweight, object class for working with reads aligned
to the genome, the AlignedGenomeIntervals. This class and its methods allow easy access to such
data and facilitate standard operations and work�ows.

There is some overlap in functionality between girafe, IRanges , GenomicRanges and tracklayer .
The range of interactions between these packages and new Bioconductor packages related to next-
generation sequencing is likely to increase over the releases. Our aim is to provide users with a broad
range of alternatives for selecting the classes and functions that are most suited for their work�ows.

Package versions

This vignette was generated using the following package versions:

� R version 4.5.0 RC (2025-04-04 r88126 ucrt), x86_64-w64-mingw32

� Running under: Windows Server 2022 x64 (build 20348)

� Matrix products: default

� Base packages: base, datasets, grDevices, graphics, grid, methods, stats, stats4, utils

� Other packages: AnnotationDbi 1.70.0, Biobase 2.68.0, BiocGenerics 0.54.0, BiocParallel 1.42.0,
Biostrings 2.76.0, GenomeInfoDb 1.44.0, GenomicAlignments 1.44.0, GenomicRanges 1.60.0,
IRanges 2.42.0, MatrixGenerics 1.20.0, RColorBrewer 1.1-3, Rsamtools 2.24.0, S4Vectors 0.46.0,
ShortRead 1.66.0, SummarizedExperiment 1.38.0, XVector 0.48.0, generics 0.1.3,
genomeIntervals 1.64.0, girafe 1.60.0, intervals 0.15.5, matrixStats 1.5.0, org.Mm.eg.db 3.21.0

� Loaded via a namespace (and not attached): DBI 1.2.3, DelayedArray 0.34.0,
GenomeInfoDbData 1.2.14, KEGGREST 1.48.0, Matrix 1.7-3, R6 2.6.1, RSQLite 2.3.9, Rcpp 1.0.14,
S4Arrays 1.8.0, SparseArray 1.8.0, UCSC.utils 1.4.0, abind 1.4-8, bit 4.6.0, bit64 4.6.0-1, bitops 1.0-9,
blob 1.2.4, cachem 1.1.0, cli 3.6.4, codetools 0.2-20, compiler 4.5.0, crayon 1.5.3, deldir 2.0-4,
fastmap 1.2.0, httr 1.4.7, hwriter 1.3.2.1, interp 1.1-6, jpeg 0.1-11, jsonlite 2.0.0, lattice 0.22-7,
latticeExtra 0.6-30, memoise 2.0.1, parallel 4.5.0, pkgcon�g 2.0.3, png 0.1-8, pwalign 1.4.0, rlang 1.1.6,
tools 4.5.0, vctrs 0.6.5

Acknowledgements

Many thanks to Nicolas Servant, Valérie Cognat, Nicolas Delhomme, and especially Patrick Aboyoun for
suggestions and feedback on the package. Special thanks to Julien Gagneur and Richard Bourgon for writing
genomeIntervals and for rapidly answering all my questions regarding the package.
The plotting functions in package girafe are largely based on the function plotAlongChrom and its auxiliary
functions from package tilingArray , most of which were written by Wolfgang Huber.
Funding: This work was supported by the Institut Curie, INCa "GepiG".

12

References

R. Edgar, M. Domrachev, and A. E. Lash. Gene Expression Omnibus: NCBI gene expression and hybridization
array data repository. Nucleic Acids Res, 30(1):207�210, Jan 2002.

R. C. Gentleman, V. J. Carey, D. J. Bates, B. M. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge,
J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J.
Rossini, G. Sawitzki, C. Smith, G. K. Smyth, L. Tierney, Y. H. Yang, and J. Zhang. Bioconductor: Open
software development for computational biology and bioinformatics. Genome Biology, 5:R80, 2004.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-e�cient alignment of short
DNA sequences to the human genome. Genome Biology, 10(3):R25, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. D. and.
The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078�9, Aug 2009.

M. Morgan, S. Anders, M. Lawrence, P. Aboyoun, H. Pages, and R. Gentleman. ShortRead: a Bioconductor
package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics,
25(19):2607�2608, Oct 2009.

O. H. Tam, A. A. Aravin, P. Stein, A. Girard, E. P. Murchison, S. Chelou�, E. Hodges, M. Anger, R. Sachi-
danandam, R. M. Schultz, and G. J. Hannon. Pseudogene-derived small interfering RNAs regulate gene
expression in mouse oocytes. Nature, 453(7194):534�538, May 2008.

J. Toedling, C. Ciaudo, O. Voinnet, E. Heard, and E. Barillot. girafe - an R/Bioconductor package for
functional exploration of aligned next-generation sequencing reads. Bioinformatics, 26(22):2902�2903, Nov
2010.

13

	Introduction
	Workflow
	Adapter trimming
	Importing aligned reads
	Exploring the aligned reads
	Processing the aligned intervals
	Visualising the aligned genome intervals
	Summarising the data using sliding windows
	Exporting the data
	Overlap with annotated genome features

	Memory usage
	A word about speed
	Links to other Bioconductor packages

