
Package ‘BitSeq’
June 28, 2022

Type Package

Title Transcript expression inference and differential expression
analysis for RNA-seq data

Version 1.40.0

Date 2020-11-26

Author Peter Glaus, Antti Honkela and Magnus Rattray

Maintainer Antti Honkela <antti.honkela@helsinki.fi>, Panagiotis Papasta-
moulis <papastamoulis@aueb.gr>

Description The BitSeq package is targeted for transcript expression
analysis and differential expression analysis of RNA-seq data
in two stage process. In the first stage it uses Bayesian
inference methodology to infer expression of individual
transcripts from individual RNA-seq experiments. The second
stage of BitSeq embraces the differential expression analysis
of transcript expression. Providing expression estimates from
replicates of multiple conditions, Log-Normal model of the
estimates is used for inferring the condition mean transcript
expression and ranking the transcripts based on the likelihood
of differential expression.

License Artistic-2.0 + file LICENSE

biocViews ImmunoOncology, GeneExpression, DifferentialExpression,
Sequencing, RNASeq, Bayesian, AlternativeSplicing,
DifferentialSplicing, Transcription

Depends Rsamtools (>= 1.99.3)

Imports S4Vectors, IRanges, methods, utils

LinkingTo Rhtslib (>= 1.15.5)

SystemRequirements GNU make

Suggests BiocStyle

git_url https://git.bioconductor.org/packages/BitSeq

git_branch RELEASE_3_15

git_last_commit 66cfe24

1

2 BitSeq-package

git_last_commit_date 2022-04-26

Date/Publication 2022-06-28

R topics documented:

BitSeq-package . 2
estimateDE . 4
estimateExpression . 5
estimateHyperPar . 8
estimateVBExpression . 9
getDE . 11
getExpression . 12
getGeneExpression . 13
getMeanVariance . 15
loadSamples . 16
parseAlignment . 17
transcriptInfo . 19
transcriptInfoFile . 20

Index 22

BitSeq-package Bayesian Inference of Transcripts from Sequencing data

Description

The BitSeq package is targeted for transcript expression analysis and differential expression analysis
of RNA-seq data in two stage process.

In the first stage it uses Bayesian inference methodology to infer expression of individual transcripts
from individual RNA-seq experiments.

The second stage of BitSeq embraces the differential expression analysis of transcript expression.
Providing expression estimates from replicates of multiple conditions, Log-Normal model of the
estimates is used for inferring the condition mean transcript expression and ranking the transcripts
based on the likelihood of differential expression.

Author(s)

Peter Glaus, Antti Honkela and Magnus Rattray Maintainer: Peter Glaus <glaus@cs.man.ac.uk>

References

Glaus, P., Honkela, A. and Rattray, M. (2012). Identifying differentially expressed transcripts from
RNA-seq data with biological variation. Bioinformatics, 28(13), 1721-1728.

BitSeq-package 3

Examples

Not run:
basic use
res1 <- getExpression("data-c0b0.sam","ensSelect1.fasta")
res2 <- getExpression("data-c0b1.sam","ensSelect1.fasta")
res3 <- getExpression("data-c1b0.sam","ensSelect1.fasta")
res4 <- getExpression("data-c1b1.sam","ensSelect1.fasta")

deRes <- getDE(list(c(res1$fn, res2$fn),
c(res3$fn, res4$fn)))

top 10 differentially expressed
head(deRes$pplr[order(abs(0.5-deRes$pplr$pplr), decreasing=TRUE),], 10)

advanced use, keeping the intermediate files
parseAlignment("data-c0b0.sam",

outFile = "data-c0b0.prob",
trSeqFile = "ensSelect1.fasta",
trInfoFile = "data.tr",
uniform = TRUE,
verbose = TRUE)

estimateExpression("data-c0b0.prob",
outFile = "data-c0b0",
outputType = "RPKM",
trInfoFile = "data.tr",
MCMC_burnIn = 200,
MCMC_samplesN = 200,
MCMC_samplesSave = 100,
MCMC_scaleReduction = 1.1,
MCMC_chainsN = 2)

cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b1.rpkm","data-c1b1.rpkm")
allConditions = list(cond1Files, cond2Files)

getMeanVariance(allConditions,
outFile = "data.means",
log = TRUE)

estimateHyperPar(allConditions,
outFile = "data.par",
meanFile = "data.means",
verbose = TRUE)

estimateDE(allConditions,
outFile = "data",
parFile = "data.par")

End(Not run)

4 estimateDE

estimateDE Estimate condition mean expression and calculate Probability of Pos-
itive Log Ratio(PPLR)

Description

Estimate condition mean expression for both experimental conditions using the expression estimates
obtained by estimateExpression

Usage

estimateDE(conditions, outFile, parFile,
lambda0=NULL, samples=NULL, confidencePerc=NULL,
verbose=NULL, norm=NULL, seed=NULL, pretend=FALSE)

Arguments

conditions List of vectors, each vector containing names of files containing the expres-
sion samples from a replicate (Can be both technical and biological replicates.
However, in order to get good results biological replicates for each condition are
essential).

outFile Prefix for the output files.

parFile File containing estimated hyperparameters.

samples Produce samples of condition mean expression apart from PPLR and confi-
dence.

confidencePerc Percentage for confidence intervals. (Default is 95%)

verbose Verbose output. Advanced options:

lambda0 Model parameter lambda_0.

norm Vector of (multiplicative) normalization constants for library size normalization
of expression samples. Number of constants has to match the number of expres-
sion samples files.

seed Sets the initial random seed for repeatable experiments.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

Details

This function takes as an input expression samples from biological replicates of two or more con-
ditions and hyperparameters over precision distribution inferred by estimateHyperPar. It uses
pseudo-vectors of expression samples from all replicates to infer condition mean expression for
each condition.

The condition mean expression samples are used for computation of the Probability of Positive
Log Ratio (PPLR) as well as log2 fold change of expression with confidence intervals and average

estimateExpression 5

condition mean expression for each transcript. Optionally the function can produce also the samples
of condition mean expression for each condition.

For more than one conditions, the comparison is done pairwise between all conditions (CP =
C∗(C−1)

2 pairs), reporting: CPxPPLR CPx(log2FC ciLow ciHigh) CxMeanExpr.

Value

.pplr file containing the PPLR, mean log2 fold change with confidence intervals,
mean condition mean expressions

.est files containing samples of condition mean expressions for each condition - op-
tional

.estVar file containing samples of inferred variance of the first condition - optional

Author(s)

Peter Glaus

See Also

estimateExpression, estimateHyperPar

Examples

Not run:
cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b0.rpkm","data-c1b1.rpkm")
estimateDE(conditions=list(cond1Files, cond2Files), outFile="data.pplr",

parFile="data.par", norm=c(1.0, 0.999, 1.0017, 0.9998))

End(Not run)

estimateExpression Estimate expression of transcripts

Description

Estimates the expression of transcripts using Markov chain Monte Carlo Algorithm

Usage

estimateExpression(probFile, outFile, parFile=NULL, outputType=NULL, gibbs=NULL,
trInfoFile=NULL, thetaActFile=NULL, MCMC_burnIn=NULL, MCMC_samplesN=NULL,
MCMC_samplesSave=NULL, MCMC_chainsN=NULL, MCMC_dirAlpha=NULL, seed=NULL,
verbose=NULL, procN=NULL, pretend=FALSE)

estimateExpressionLegacy(probFile, outFile, parFile=NULL, outputType=NULL,
gibbs=NULL, trInfoFile=NULL, thetaActFile=NULL, MCMC_burnIn=NULL,
MCMC_samplesN=NULL, MCMC_samplesSave=NULL, MCMC_samplesNmax=NULL,
MCMC_chainsN=NULL, MCMC_scaleReduction=NULL, MCMC_dirAlpha=NULL,
seed=NULL, verbose=NULL, pretend=FALSE)

6 estimateExpression

Arguments

probFile File with alignment probabilities produced by parseAlignment

outFile Prefix for the output files.

outputType Output type, possible values: theta, RPKM, counts, tau.

gibbs Use regular Gibbs sampling instead of Collapsed Gibbs sampling.

parFile File containing parameters for the sampler, which can be otherwise specified
by [MCMC*] options. As the file is checked after every MCMC iteration, the
parameters can be adjusted while running.

trInfoFile File containing transcript information. (Necessary for RPKM)

MCMC_burnIn Length of sampler’s burn in period.

MCMC_samplesN Initial number of samples produced. These are used either to estimate the num-
ber of necessary samples or to estimate possible scale reduction.

MCMC_samplesSave

Number of samples recorder at the end in total.

MCMC_chainsN Number of parallel chains used. At least two chains will be used.

seed Sets the initial random seed for repeatable experiments.

verbose Verbose output.

procN Maximum number of threads to be used. The program will not use more threads
that there are MCMC chains. Advanced options:

thetaActFile File for logging noise parameter thetaAct, which is only generated when regular
Gibbs sampling is used.

MCMC_dirAlpha Alpha parameter for the Dirichlet distribution.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

MCMC_scaleReduction

(Only for estimateExpressionLegacy.) Target scale reduction, sampler fin-
ishes after this value is met.

MCMC_samplesNmax

(Only for estimateExpressionLegacy.) Maximum number of samples pro-
duced in one iteration. After producing samplesNmax samples sampler finishes.

Details

This function runs Collapse Gibbs algorithm to sample the MCMC samples of transcript expres-
sion. The input is the .prob file containing alignment probabilities which were produced by
parseAlignment. Other optional input is the transcript information file specified by trInfoFile
and again produced by parseAlignment.

The estimateExpression function first runs burn-in phase and initial iterations to estimate the
properties of the MCMC sampling. The initial samples are used to estimate the number of samples
necessary for generating MCMC_samplesSave effective samples in the second, final, stage.

The estimateExpressionLegacy uses less efficient convergence checking via "scale reduction"
estimation. After an iteration of generating MCMC_samplesN samples, it estimates possible scale

estimateExpression 7

reduction of the marginal posterior variance. While the possible scale reduction is high, it dou-
bles the MCMC_samplesN and starts new iteration. This process is repeated until desired value of
MCMC_scaleReduction is met, or MCMC_samplesNmax samples are generated.

The sampling algorithm can be configured via parameters file parFile or by using the MCMC* op-
tions. The advantage of using the file (at least an existing blank text document) is that by changing
the configuration values while running, the new values do get updated after every iteration.

Value

.thetaMeans file containing average relative expression of transcripts θ

Either one of sample files based on output type selected:

.rpkm for RPKM expression

.counts for estimated read counts

.theta for relative expression of fragments

.tau for relative expression of transcripts

Author(s)

Peter Glaus

See Also

parseAlignment

Examples

Not run:
estimateExpression(probFile="data.prob", outFile="data", outputType="RPKM",

trInfoFile="data.tr", seed=47, verbose=TRUE)
estimateExpression(probFile="data-c0b0.prob", outFile="data-c0b0", outputType="RPKM",

trInfoFile="data.tr", MCMC_burnIn=200, MCMC_samplesN=200, MCMC_samplesSave=100,
MCMC_chainsN=2 , MCMC_dirAlpha=NULL)

estimateExpression(probFile="data.prob", outFile="data-G", gibbs=TRUE,
parFile="parameters1.txt", outputType="counts", trInfoFile="data.tr")

estimateExpressionLegacy(probFile="data-c0b0.prob", outFile="data-c0b0", outputType="RPKM",
trInfoFile="data.tr", MCMC_burnIn=200, MCMC_samplesN=200, MCMC_samplesSave=100,

MCMC_samplesNmax=10000, MCMC_scaleReduction=1.2, MCMC_chainsN=2 , MCMC_dirAlpha=NULL)

End(Not run)

8 estimateHyperPar

estimateHyperPar Estimate hyperparameters for DE model using expression samples and
joint mean expression

Description

Estimate hyperparameters for the Differential Expression model using expression samples and pro-
duced smoothed values of the hyperparameters depending on joint mean expression.

Usage

estimateHyperPar(outFile, conditions=NULL, paramsInFile=NULL,
meanFile=NULL, force=TRUE, exThreshold=NULL, lambda0=NULL,
paramsAllFile=NULL, smoothOnly=NULL, lowess_f=NULL, lowess_steps=NULL,
verbose=NULL, veryVerbose=NULL, norm=NULL, seed=NULL, pretend=FALSE)

Arguments

outFile Name of the output file.

conditions List of vectors, each vector containing names of files containing the expres-
sion samples from a replicate (Can be both technical and biological replicates.
However, in order to get good results biological replicates for each condition are
essential).

paramsInFile File produced by previous run of the function using paramsAllFile flag.

meanFile Name of the file containing joint mean and variance.

exThreshold Threshold of lowest expression for which the estimation is done.

paramsAllFile Name of the file to which to store all parameter values generated prior to lowess
smoothing(good for later, more careful re-smoothing.)

smoothOnly Input file contains previously sampled hyperparameters which should smoothed
only.

verbose Verbose output. Advanced options:

force Force smoothing hyperparameters, otherwise program might not produce pa-
rameters file at the end.

lambda0 Model parameter lambda0.

lowess_f Parameter F for lowess smoothing specifying amount of smoothing.

lowess_steps Parameter Nsteps for lowess smoothing specifying number of iterations.

veryVerbose More verbose output.

norm Vector of (multiplicative) normalization constants for library size normalization
of expression samples. Number of constants has to match the number of expres-
sion samples files.

seed Sets the initial random seed for repeatable experiments.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

estimateVBExpression 9

Value

.par file containing the smoothed hyperparameters

.ALLpar file containing all hyperparameter samples prior to smoothing - optional

Author(s)

Peter Glaus

See Also

estimateDE

Examples

Not run:
cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b0.rpkm","data-c1b1.rpkm")
estimateHyperPar(conditions=list(cond1Files, cond2Files), outFile="data.par",

meanFile="data.means", verbose=TRUE)

estimateHyperPar(conditions=list(cond1Files, cond2Files), outFile="data.par",
meanFile="data.means", paramsFile="data.ALLpar", force=FALSE)

estimateHyperPar(outFile="data.par", paramsInFile="data.ALLpar", smoothOnly=TRUE)

End(Not run)

estimateVBExpression Estimate expression of transcripts using VB

Description

Estimates the expression of transcripts using Variational Bayes inference algorithm

Usage

estimateVBExpression (probFile, outFile, outputType=NULL, trInfoFile=NULL,
seed=NULL, samples=NULL, optLimit=1e-5, optMethod="FR", procN=4,
verbose=FALSE, veryVerbose=FALSE, pretend=FALSE)

Arguments

probFile File with alignment probabilities produced by parseAlignment

outFile Prefix for the output files.

outputType Output type, possible values: theta, RPKM, counts. This is only relevant when
the samples option is used. Default: theta.

trInfoFile File containing transcript information. (Necessary for RPKM output)

seed Sets the initial random seed for repeatable experiments.

10 estimateVBExpression

samples Number of samples to be generated from the posterior distribution. Default: no
samples are generated.

verbose Verbose output.

veryVerbose Very verbose output.

procN Maximum number of threads to be used. The program will not use more threads
that there are MCMC chains. Advanced options:

optLimit The optimisation limit in terms of minimal gradient or change of bound.

optMethod The optimisation method, use "FR", "HR", or "steepest".

pretend Do not execute, only print out command line calls for the C++ version of the
program.

Details

This function runs Variational Bayes algorithm to estimate the transcript expression. The input is
the .prob file containing alignment probabilities which were produced by parseAlignment. Other
optional input is the transcript information file specified by trInfoFile and again produced by
parseAlignment.

It is much faster inference than MCMC which estimates mean expression equally well. However,
the posterior is in form of Dirichlet distribution with underestimated variance. Use this method in
cases when you are only interested in mean expression.

Value

.m_alphas file containing mean relative expression of transcripts θ and parameters of the
Dirichlet distribution. Please note the first line in the file corresponds to the
noise transcript.

If option samples is used, the program also generates samples based of the outputType, the default
would be file with extension ".VBtheta".

Author(s)

Peter Glaus

See Also

parseAlignment, estimateExpression

Examples

Not run:
setwd(system.file("extdata",package="BitSeq"))
parseAlignment("data-c0b0.sam", outFile = "data-c0b0.prob", trSeqFile = "ensSelect1.fasta",

trInfoFile = "data.tr", uniform = TRUE);

estimateVBExpression(probFile="data-c0b0.prob", outFile="data-c0b0-a", outputType="RPKM",
samples=1000, trInfoFile="data.tr", seed=47, verbose=TRUE)

estimateVBExpression(probFile="data-c0b0.prob", outFile="data-c0b0-b", trInfoFile="data.tr")
estimateVBExpression(probFile="data-c0b0.prob", outFile="data-c0b0-c", trInfoFile="data.tr",

getDE 11

optLimit=1e-6, optMethod = "HS", procN=12, veryVerbose=TRUE);

End(Not run)

getDE Estimate Probability of Positive Log Ratio

Description

Using expression samples, program estimates the probability of differential expression for each
transcript.

Usage

getDE(conditions, outPrefix=NULL, samples=FALSE, trInfoFile=NULL,
norm=NULL, seed=NULL, pretend=FALSE)

Arguments

conditions List of vectors, each vector containing names of files containing the expres-
sion samples from a replicate (Can be both technical and biological replicates.
However, in order to get good results biological replicates for each condition are
essential).

outPrefix Prefix for the output files. Otherwise program creates temporary files, which are
only valid for current R session.

samples Produce samples of condition mean expression apart from PPLR and confi-
dence.

trInfoFile Transcript information file providing the names of transcripts.
norm Vector of (multiplicative) normalization constants for library size normalization

of expression samples. Number of constants has to match the number of expres-
sion samples files.

seed Sets the initial random seed for repeatable experiments.
pretend Do not execute, only print out command line calls for the C++ version of the

program.

Details

This function uses estimateHyperPar function to estimate the hyperparameters for DE model and
the uses estimateDE function to infer the condition mean expression and calculate Probability of
Positive Log Ratio.

Value

list with items:

pplr DataFrame with PPLR and other statistics
fn list with file names for PPLR file, fn$pplr, and condition mean expression

samples, fn$samplesFiles (only with option samples=TRUE)

12 getExpression

Author(s)

Peter Glaus

See Also

getExpression, estimateHyperPar, estimateDE

Examples

Not run:
cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b0.rpkm","data-c1b1.rpkm")
deRes <- getDE(conditions=list(cond1Files, cond2Files))
top 10 DE transcripts
head(deRes$pplr[order(abs(0.5-deRes$pplr$pplr), decreasing=TRUE),], 10)

End(Not run)

getExpression Estimate transcript expression

Description

Estimate expression of transcripts. Starting from alignment and reference files function function
handles the entire process of expression analysis resulting in transcript expression means and stan-
dard deviation together with file containing all the expression samples.

Usage

getExpression(alignFile, trSeqFile, outPrefix=NULL, uniform=TRUE, type="RPKM",
log=FALSE, limitA=NULL, seed=NULL, pretend=FALSE, ...)

Arguments

alignFile File containing read alignments.
trSeqFile File containing transcript sequence in FASTA format.
outPrefix Prefix for the output files. Otherwise program creates temporary files, which are

only valid for current R session.
uniform Use uniform read distribution.
type Output type, possible values: theta, RPKM, counts, tau.
log Report mean and expression of logged expression samples.
limitA Limit maximum number of alignments per read. Reads with more alignments

than limit will be discarded.
seed Sets the initial random seed for repeatable experiments.
pretend Do not execute, only print out command line calls for the C++ version of the

program.
... Other arguments are passed to estimateExpression, please see estimateExpression

for more details

getGeneExpression 13

Details

This function uses parseAlignment function to compute alignment probabilities and the function
estimateExpression to produce the expression samples.

In case of non-uniform read distribution, it first produces approximate estimates of expression using
uniform read distribution with VB inference and subsequently uses these estimates to compute read
distribution bias-corrected alignment probabilities, which are used in the estimateExpression
function to produce expression estimates.

The order of transcripts in the results is always the same as in the alignment file. The transcripts
can be identified by names stored in the trInfo part of the result.

Value

list with items:

exp DataFrame with transcript expression mean and standard deviation

fn name of the file containing all the expression samples

counts vector of estimated read counts per transcript

trInfo DataFrame with transcript information, contains: transcript name, possibly gene
name, transcript length, and adjusted transcript length

Author(s)

Peter Glaus

See Also

getDE, estimateExpression, parseAlignment

Examples

Not run:
res1 <- getExpression("data-c0b0.sam","ensSelect1.fasta", MCMC_chains=2,

MCMC_samplesN=100)

End(Not run)

getGeneExpression Calculate gene expression or relative within gene expression

Description

Calculate either gene expression or relative within gene expression using transcript expression sam-
ples and transcript information file.

14 getGeneExpression

Usage

getGeneExpression(sampleFile, outFile=NULL, trInfo=NULL, trInfoFile=NULL,
pretend=FALSE)

getWithinGeneExpression(sampleFile, outFile=NULL, trInfo=NULL, trInfoFile=NULL,
pretend=FALSE, keepOrder=FALSE)

Arguments

sampleFile File containing the transcript expression samples.

outFile Name of the output file. If not used, function uses temporary file.

trInfo DataFrame containing transcript information. Either trInfo or trInfoFile
argument has to be provided. Otherwise function tries file with same name as
sampleFile and extension tr.

trInfoFile Transcript information file. Either trInfo or trInfoFile argument has to be
provided. Otherwise function tries file with same name as sampleFile and
extension tr.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

keepOrder If TRUE then transcripts will always keep same order, otherwise transcripts might
be grouped by genes in the output. (The order is always same if transcripts are
grouped by genes.)

Details

The getGeneExpression function takes samples of transcript expression and produces file with
expression of genes by adding up transcript expression.

The getWithinGeneExpression function takes samples of transcript expression and produces file
with relative within gene expression samples for each transcript.

Both function need valid transcript information which contains gene transcript mapping. This can
be provided either via DataFrame trInfo or file named trInfoFile.

In case of a file, it should be formatted in following manner. The first line should contain "# M
<numberOfTranscripts>" and the following numberOfTranscripts lines have to contain "<gene-
Name> <transcriptName> <transcriptLength>". Example is provided in extdata/ensSelect1.tr.
Please note that the transcript information file automatically generated from alignment files are not
sufficient because SAM/BAM files do not include gene names. We hope to provide more convenient
way in future versions of BitSeq.

Value

Name of file containing the new expression samples.

Author(s)

Peter Glaus

getMeanVariance 15

See Also

getExpression, tri.load, tri.file.setGeneNames, tri.file.hasGeneNames

Examples

setwd(system.file("extdata",package="BitSeq"))
use transcript information as object
trinfo <- tri.load("ensSelect1.tr")
gene expression
getGeneExpression("data-c0b1.rpkm", "data-c0b1-GE.rpkm", trInfo=trinfo)
gExpSamples <- loadSamples("data-c0b1-GE.rpkm")
gExpMeans <- rowMeans(as.data.frame(gExpSamples))
gExpMeans

within gene expression
wgeFN <- getWithinGeneExpression("data-c0b1.rpkm", trInfoFile="ensSelect1.tr")
wgExpSamples <- loadSamples(wgeFN)
wgExpMeans <- rowMeans(as.data.frame(wgExpSamples))
head(wgExpMeans)

getMeanVariance Calculate mean and variance of expression samples

Description

Calculate mean and variance of expression samples or log-expression samples

Usage

getMeanVariance(sampleFiles, outFile, log=NULL, type=NULL, verbose=NULL,
norm=NULL, pretend=FALSE)

Arguments

sampleFiles Vector of one or more files containing the expression samples.

outFile Name of the output file.

log Use logged values.

type Type of variance, possible values: sample,sqDif for sample variance or squared
difference.

verbose Verbose output.

norm Vector of (multiplicative) normalization constants for library size normalization
of expression samples. Number of constants has to match the number of expres-
sion samples files.

pretend Do not execute, only print out command line calls for the C++ version of the
program.

16 loadSamples

Details

The getMeanVariance function computes means and variances of MCMC expression samples.
These can be computed either from single file or from multiple files using sample variance. Variance
of two experiments (i.e. technical or biological replicates) can be estimated also by using sqDif
option for type which specify the computation of the average square distance between the samples
from two sets.

Value

.means File containing means (first column) and variance (second column) for each
transcript (or row in the sample files)

Author(s)

Peter Glaus

See Also

estimateExpression

Examples

setwd(system.file("extdata",package="BitSeq"));
sampleFileNames = c("data-c1b0.rpkm","data-c1b1.rpkm")
getMeanVariance(sampleFiles=sampleFileNames, outFile="data-c1.Lmean", log=1,

norm=c(1.0017, 0.9998))

loadSamples Loading and saving expression samples

Description

Functions for loading expression samples into DataFrame and saving samples from DataFrame into
a file.

Usage

loadSamples(fileName, trInfoFile=NULL)
writeSamples(data, fileName)

Arguments

fileName Name of the file with samples or to which the samples are written.

data DataFrame with samples written to the file.

trInfoFile Transcript information file which can be used to name the rows.

parseAlignment 17

Details

The loadSamples function load samples from the specified file into a DataFrame. If the transcript
information file is provided, the transcript names are use as row names.

The writeSamples function can save samples from a DataFrame into a file in format which is valid
for BitSeq and can be used in other functions.

Value

DataFrame Containing the expression samples

Author(s)

Peter Glaus

See Also

estimateExpression

Examples

Not run:
samples1<-loadSamples("data-c0b1.rpkm")
writeSamples(samples1,"new-c0b1.rpkm")

End(Not run)

parseAlignment Compute probabilities of alignments

Description

Compute probability of alignments and save them into .prob file.

Usage

parseAlignment(alignFile, outFile, trSeqFile, inputFormat=NULL, trInfoFile=NULL,
expressionFile=NULL, readsN=NULL, uniform=TRUE, limitA=NULL, lenMu=NULL,
lenSigma=NULL, excludeSingletons=NULL, mateNamesDiffer=NULL,
verbose=NULL, veryVerbose=NULL, procN=NULL, pretend=FALSE)

Arguments

alignFile File containing read alignments.

outFile Name of the output file.

inputFormat Input format: possible values SAM, BAM. (This should be detected automatically
in most cases.)

trInfoFile File to save transcript information extracted from [BS]AM file and reference.

18 parseAlignment

trSeqFile File containing transcript sequence in FASTA format.
expressionFile Transcript relative expression estimates — for better non-uniform read distribu-

tion estimation.
readsN Total number of reads. This is usually not necessary if SAM/BAM contains also

reads with no valid alignments.
uniform Use uniform read distribution.
limitA Limit maximum number of alignments per read. Reads with more alignments

than limit will be discarded.
lenMu Set mean of log fragment length distribution. lfrag ∼ LogNormal(µ, σ2)

lenSigma Set σ2 (or variance) of log fragment length distribution. lfrag ∼ LogNormal(µ, σ2)

excludeSingletons

Exclude single mate alignments for paired-end reads.
mateNamesDiffer

Mates from paired-end reads have different names.
verbose Verbose output.
veryVerbose Very verbose output.
procN Maximum number of threads to be used.
pretend Do not execute, only print out command line calls for the C++ version of the

program.

Details

This function uses the alignments and reference file to assign probability to each alignment. It uses
either bias-corrected or uniform model for the read distribution, assumes Log-Normal distribution of
fragment lengths for pair-end read data and uses quality scores and mismatches to assign probability
for every alignment of a read (or fragment) to a transcript.

Value

.prob file containing the alignment probabilities

.tr file containing reference transcript names, lengths and effective lengths - op-
tional

Author(s)

Peter Glaus

See Also

estimateExpression

Examples

Not run:
parseAlignment(alignFile="data.sam", outFile="data.prob",

trSeqFile="trReference.fa" ,trInfoFile="data.tr")

End(Not run)

transcriptInfo 19

transcriptInfo Manage information about transcript reference

Description

Manage information about the transcript reference. These functions are used for reading, saving
and updating transcript information DataFrame.

Usage

tri.load(trInfoFile)
tri.save(trInfo, trInfoFile)
tri.hasGeneNames(trInfo)
tri.setGeneNames(trInfo, geneNames, transcriptNames=NULL)

Arguments

trInfoFile Name of the file containing transcript information or the where the information
should be stored.

trInfo DataFrame containing the transcript information.

geneNames Vector with new gene names that should be assigned to transcripts.
transcriptNames

Names of transcripts that should be associated with the gene names.

Details

If not provided with the information, BitSeq extracts information about the transcript reference
from the alignment and sequence files. This information is stored in so called transcript infor-
mation(trInfo) file, usually having extension .tr. This file contains columns with gene names (if
available), transcript names, transcript lengths and optionally with adjusted lengths of transcripts.
The expression of transcripts is reported in the same order as are the transcripts ordered in the trInfo
file, hence it serves as identification of final results.

Other important use of trInfo file is for calculating gene expression or within gene expression, where
the file is used for determining which transcripts belong to which genes. However, for this the gene
names have to be properly set in the transcript info, which is not always the case.

Function tri.load loads transcript information from a file provided by argument trInfoFile into
a DataFrame.

Function tri.save saves transcript information from a DataFrame provided by trInfo argument
into a file name provided by argument trInfoFile.

Function tri.hasGeneNames determines whether gene names are properly set in the transcript in-
formation and returns TRUE or FALSE and a warning message identifying the problem.

Function tri.setGeneNames changes gene names of a transcript information trInfo and retruns
new DataFrame with updated values. The vector geneNames should provide gene names of tran-
scripts and be of the same length as is the number of transcripts. The gene names have to be either

20 transcriptInfoFile

ordered as their appropriate transcripts in trInfo object, or if ordered differently, vector of tran-
script names, ordered as gene names has to be provided by argument transcriptNames. The names
in transcriptNames have to correspond to the transcript names in trInfo object.

Value

Function tri.load returns DataFrame with transcript information.

Function tri.hasGeneNames returns boolean value.

Function tri.setGeneNames returns DataFrame with transcript information containing updated
gene names (Note: the transcript names do not change.).

Author(s)

Peter Glaus

See Also

getExpression, getGeneExpression, tri.file.setGeneNames

Examples

setwd(system.file("extdata",package="BitSeq"))
trinfo <- tri.load("ensSelect1.tr")
trinfo[1:10,]
this should be true
tri.hasGeneNames(trinfo)
reverse the gene order - this will make the information INCORRECT
rev.trinfo <- tri.setGeneNames(trinfo, rev(trinfo[,1]))
rev.trinfo[1:10,]
tri.save(rev.trinfo, "reversed-ensSelect1.tr")

transcriptInfoFile Manage file containing information about transcript reference

Description

Manage file containing information about the transcript reference. These functions are used for
verifying and updating transcript information DataFrame.

Usage

tri.file.hasGeneNames(trInfoFile)
tri.file.setGeneNames(trInfoFile, geneNames, transcriptNames=NULL)

transcriptInfoFile 21

Arguments

trInfoFile Name of the file containing transcript information or the where the information
should be stored.

geneNames Vector with new gene names that should be assigned to transcripts.
transcriptNames

Names of transcripts that should be associated with the gene names.

Details

If not provided with the information, BitSeq extracts information about the transcript reference
from the alignment and sequence files. This information is stored in so called transcript infor-
mation(trInfo) file, usually having extension .tr. This file contains columns with gene names (if
available), transcript names, transcript lengths and optionally with adjusted lengths of transcripts.
Important use of trInfo file is for calculating gene expression or within gene expression, where the
file is used for determining which transcripts belong to which genes. However, for this the gene
names have to be properly set in the transcript info, which is not always the case.

Function tri.file.hasGeneNames determines whether gene names are properly set in the tran-
script information file and returns TRUE or FALSE and a warning message identifying the problem.

Function tri.file.setGeneNames updates the gene names of a transcript information in file pro-
vided by argument trInfoFile. The vector geneNames should provide gene names of transcripts
and be of the same length as is the number of transcripts. The gene names have to be either ordered
as their appropriate transcripts in trInfoFile file, or if ordered differently, vector of transcript
names, ordered as gene names has to be provided by argument transcriptNames. The names in
transcriptNames have to correspond to the transcript names in actual file.

Value

Function tri.file.hasGeneNames returns boolean value.

Author(s)

Peter Glaus

See Also

getExpression, getGeneExpression, tri.load, tri.save

Examples

setwd(system.file("extdata",package="BitSeq"))
this should be true
tri.file.hasGeneNames("ensSelect1.tr")

Index

∗ differential expression
estimateDE, 4
estimateHyperPar, 8
getDE, 11

∗ expression mean
getMeanVariance, 15

∗ gene expression
getGeneExpression, 13

∗ package
BitSeq-package, 2

∗ transcript expression
estimateExpression, 5
estimateVBExpression, 9
getExpression, 12
loadSamples, 16
parseAlignment, 17

∗ transcript information
transcriptInfo, 19
transcriptInfoFile, 20

BitSeq (BitSeq-package), 2
BitSeq-package, 2

estimateDE, 4, 9, 12
estimateExpression, 4, 5, 5, 10, 12, 13,

16–18
estimateExpressionLegacy

(estimateExpression), 5
estimateHyperPar, 4, 5, 8, 12
estimateVBExpression, 9

getDE, 11, 13
getExpression, 12, 12, 15, 20, 21
getGeneExpression, 13, 20, 21
getMeanVariance, 15
getWithinGeneExpression

(getGeneExpression), 13

loadSamples, 16

parseAlignment, 6, 7, 10, 13, 17

transcriptInfo, 19
transcriptInfoFile, 20
tri.file.hasGeneNames, 15
tri.file.hasGeneNames

(transcriptInfoFile), 20
tri.file.setGeneNames, 15, 20
tri.file.setGeneNames

(transcriptInfoFile), 20
tri.hasGeneNames (transcriptInfo), 19
tri.load, 15, 21
tri.load (transcriptInfo), 19
tri.save, 21
tri.save (transcriptInfo), 19
tri.setGeneNames (transcriptInfo), 19

writeSamples (loadSamples), 16

22

	BitSeq-package
	estimateDE
	estimateExpression
	estimateHyperPar
	estimateVBExpression
	getDE
	getExpression
	getGeneExpression
	getMeanVariance
	loadSamples
	parseAlignment
	transcriptInfo
	transcriptInfoFile
	Index

