A quick introduction to GRanges and GRangesList objects

Hervé Pagès
hpages.on.github@gmail.com

Michael Lawrence
lawrence.michael@gene.com

July 2015
GRanges objects
- The GRanges() constructor
- GRanges accessors
- Vector operations on GRanges objects
- Range-based operations on GRanges objects

GRangesList objects
- The GRangesList() constructor
- GRangesList accessors
- Vector operations on GRangesList objects
- List operations on GRangesList objects
- Range-based operations on GRangesList objects

Other resources
The GRanges class is a container for...

... storing a set of genomic ranges (a.k.a. genomic regions or genomic intervals).

- Each genomic range is described by a chromosome name, a `start`, an `end`, and a strand.
- `start` and `end` are both **1-based** positions relative to the 5’ end of the plus strand of the chromosome, even when the range is on the minus strand.
- `start` and `end` are both considered to be included in the interval (except when the range is empty).
- The **width** of the range is the number of genomic positions included in it. So \(width = end - start + 1 \).
- `end` is always \(\geq start \), except for empty ranges (a.k.a. zero-width ranges) where \(end = start - 1 \).

Note that the `start` is always the leftmost position and the `end` the rightmost, even when the range is on the minus strand.

Gotcha: A TSS is at the `end` of the range associated with a transcript located on the minus strand.
The **GRanges()** constructor

```r
> library(GenomicRanges)
> gr1 <- GRanges(seqnames=Rle(c("ch1", "chMT"), c(2, 4)),
+               ranges=IRanges(16:21, 20),
+               strand=rep(c("+", "-", "*"), 2))
> gr1
```

```
GRanges object with 6 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
</tr>
</tbody>
</table>
[1] ch1    | 16-20   | +      
[2] ch1    | 17-20   | -      
[3] chMT   | 18-20   | *      
[5] chMT   | 20      | -      
[6] chMT   | 21-20   | *      

seqinfo: 2 sequences from an unspecified genome; no seqlengths
```
GRanges accessors: length(), seqnames(), ranges()

> length(gr1)
[1] 6

> seqnames(gr1)
factor-Rle of length 6 with 2 runs
 Lengths: 2 4
 Values : ch1 chMT
Levels(2): ch1 chMT

> ranges(gr1)
IRanges object with 6 ranges and 0 metadata columns:
 start end width
 <integer> <integer> <integer>
[1] 16 20 5
[2] 17 20 4
[3] 18 20 3
[4] 19 20 2
[5] 20 20 1
[6] 21 20 0
GRanges accessors: `start()`, `end()`, `width()`, `strand()`

```r
> start(gr1)
[1] 16 17 18 19 20 21
> end(gr1)
[1] 20 20 20 20 20 20
> width(gr1)
[1] 5 4 3 2 1 0
> strand(gr1)
factor-Rle of length 6 with 6 runs
  Lengths: 1 1 1 1 1 1
  Values : + - * + - *
Levels(3): + - *
> strand(gr1) <- c("-", ",", "+")
> strand(gr1)
factor-Rle of length 6 with 4 runs
  Lengths: 2 1 2 1
  Values : - + - +
Levels(3): + - *
```
GRanges accessors: names()

> names(gr1) <- LETTERS[1:6]
> gr1

GRanges object with 6 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>16-20</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>17-20</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-20</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>19-20</td>
</tr>
<tr>
<td>E</td>
<td>chMT</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-20</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome; no seqlengths

> names(gr1)

[1] "A" "B" "C" "D" "E" "F"
GRanges accessors: mcols()

Like with most *Bioconductor* vector-like objects, *metadata columns* can be added to a GRanges object:

```r
> mcols(gr1) <- DataFrame(score=11:16, GC=seq(1, 0, length=6))
> gr1

GRanges object with 6 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>16-20</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>17-20</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-20</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>19-20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>chMT</td>
<td>20</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-20</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome; no seqlengths
```

> mcols(gr1)

Dataframe with 6 rows and 2 columns

<table>
<thead>
<tr>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.2</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>
GRanges accessors: seqinfo(), seqlevels(), seqlengths()

> seqinfo(gr1)
Seqinfo object with 2 sequences from an unspecified genome; no seqlengths:
seqnames seqlengths isCircular genome
 ch1 NA NA <NA>
 chMT NA NA <NA>

> seqlevels(gr1)
[1] "ch1" "chMT"

> seqlengths(gr1)
 ch1 chMT
 NA NA

> seqlengths(gr1) <- c(50000, 800)
> seqlengths(gr1)
 ch1 chMT
50000 800
Vector operations on GRanges objects

What we call *vector operations* are operations that work on any ordinary vector:

- `length()`, `names()`
- Single-bracket subsetting: `[`
- Combining: `c()`
- `split()`, `relist()`
- Comparing: `==`, `!=`, `match()`, `%in%`, `duplicated()`, `unique()`
- Ordering: `<=`, `>=`, `<`, `>`, `order()`, `sort()`, `rank()`

GRanges objects support all these *vector operations* \(\Rightarrow\) They’re considered *vector-like* objects.
> gr1[c("F", "A")]

GRanges object with 2 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-20</td>
<td>+</td>
<td>16</td>
</tr>
<tr>
<td>A</td>
<td>ch1</td>
<td>16-20</td>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> gr1[strand(gr1) == "+"]

GRanges object with 2 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-20</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-20</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
Vector operations on GRanges objects: Single-bracket subsetting

```r
> gr1 <- gr1[-5]
> gr1

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

---

seqinfo: 2 sequences from an unspecified genome
Vector operations on GRanges objects: Combining

```r
> gr2 <- GRanges(seqnames="ch2",
+ ranges=IRanges(start=c(2:1,2), width=6),
+ score=15:13,
+ GC=seq(0, 0.4, length=3))
> gr12 <- c(gr1, gr2)
> gr12
```

GRanges object with 8 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
Vector operations on GRanges objects: Comparing

```r
> gr12[length(gr12)] == gr12
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

> duplicated(gr12)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

> unique(gr12)
```

GRanges object with 7 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>16-20</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>17-20</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-20</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>19-20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-20</td>
<td>+</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
Vector operations on GRanges objects: Ordering

> sort(gr12)

GRanges object with 8 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ch1</td>
<td>16-20</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B ch1</td>
<td>17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C chMT</td>
<td>18-20</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

-------

seqinfo: 3 sequences from an unspecified genome
### Splitting a GRanges object

```r
> split(gr12, seqnames(gr12))
GRangesList object of length 3:

$ch1
GRanges object with 2 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>16-20</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>17-20</td>
<td>-</td>
<td>12</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$chMT
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-20</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>19-20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-20</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$ch2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
```
Exercise 1

a. Load the *GenomicRanges* package.

b. Open the man page for the *GRanges* class and run the examples in it.

c. Extract from *GRanges* object `gr` the elements (i.e. ranges) with a score between 4 and 8.

d. Split `gr` by strand.
An overview of *range-based* operations

**Intra range transformations**
- shift()
- narrow()
- resize()
- flank()

**Inter range transformations**
- range()
- reduce()
- gaps()
- disjoin()

**Range-based set operations**
- union()
- intersect()
- setdiff()
- punion()
- pintersect()
- psetdiff()
- pgap()

**Coverage and slicing**
- coverage()
- slice()

**Finding/counting overlapping ranges**
- findOverlaps()
- countOverlaps()

**Finding the nearest range neighbor**
- nearest()
- precede()
- follow()

and more...
Examples of some common *range-based* operations

- ir0
- shift(ir0, 5)
- reduce(ir0)
- disjoin(ir0)
Range-based operations on GRanges objects

> gr2

GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 1 sequence from an unspecified genome; no seqlengths

> shift(gr2, 50)

GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>52-57</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>51-56</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>52-57</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 1 sequence from an unspecified genome; no seqlengths
Range-based operations on GRanges objects (continued)

```r
> gr1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>16-20</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>17-20</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-20</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>19-20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-20</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> resize(gr1, 12)
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>9-20</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>9-20</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-29</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>9-20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-32</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
Range-based operations on GRanges objects (continued)

```r
> gr1

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>16-20</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>17-20</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-20</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>19-20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>21-20</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> flank(gr1, 3)

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>21-23</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>21-23</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>15-17</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>21-23</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>18-20</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
```
Range-based operations on GRanges objects (continued)

```r
> gr3 <- shift(gr1, c(35000, rep(0, 3), 100))
> width(gr3)[c(3,5)] <- 117
> gr3
GRanges object with 5 ranges and 2 metadata columns:
  seqnames ranges strand | score  GC
    <Rle> <IRanges> <Rle> | <integer> <numeric>
  A ch1  35016-35020 - |   11 1.0
  B ch1   17-20   - |   12 0.8
  C chMT  18-134   + |   13 0.6
  D chMT  19-20   - |   14 0.4
  F chMT  121-237  + |   16 0.0

-------
seqinfo: 2 sequences from an unspecified genome
```

```r
> range(gr3)
GRanges object with 3 ranges and 0 metadata columns:
  seqnames ranges strand
    <Rle> <IRanges> <Rle>
[1] ch1  17-35020  
[3] chMT  19-20  -

-------
seqinfo: 2 sequences from an unspecified genome
```
> gr3

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>35016-35020</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>17-20</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-134</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>19-20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>121-237</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome

> reduce(gr3)

GRanges object with 4 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>ch1</td>
<td>17-20</td>
</tr>
<tr>
<td>[2]</td>
<td>ch1</td>
<td>35016-35020</td>
</tr>
<tr>
<td>[4]</td>
<td>chMT</td>
<td>19-20</td>
</tr>
</tbody>
</table>

seqinfo: 2 sequences from an unspecified genome
Range-based operations on GRanges objects (continued)

```r
> gr3
GRanges object with 5 ranges and 2 metadata columns:
  seqnames ranges strand | score  GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
A  ch1 35016-35020 - | 11 1.0
B  ch1 17-20 - | 12 0.8
C  chMT 18-134 + | 13 0.6
D  chMT 19-20 - | 14 0.4
F  chMT 121-237 + | 16 0.0
-------
seqinfo: 2 sequences from an unspecified genome

> gaps(gr3)
GRanges object with 10 ranges and 0 metadata columns:
  seqnames ranges strand
  <Rle> <IRanges> <Rle>
[1]  ch1  1-50000 +
[2]  ch1  1-16 -
[3]  ch1  21-35015 -
... ... ...
[8]  chMT  1-18 -
[9]  chMT  21-800 -
[10] chMT  1-800 *
-------
seqinfo: 2 sequences from an unspecified genome
```
> gr3

GRanges object with 5 ranges and 2 metadata columns:

```
    seqnames  ranges strand | score  GC
         <Rle>  <IRanges> <Rle> | <integer> <numeric>
    A     ch1   35016-35020 - |   11     1.0
    B     ch1    17-20 - |   12     0.8
    C    chMT    18-134 + |   13     0.6
    D    chMT    19-20 - |   14     0.4
    F    chMT   121-237 + |   16     0.0
```

seqinfo: 2 sequences from an unspecified genome

> disjoin(gr3)

GRanges object with 6 ranges and 0 metadata columns:

```
    seqnames  ranges strand
         <Rle>  <IRanges> <Rle>
   [1]    ch1    17-20 -
   [2]    ch1   35016-35020 -
   [3]    chMT    18-120 +
   [4]    chMT   121-134 +
   [6]    chMT    19-20 -
```

seqinfo: 2 sequences from an unspecified genome
Exercise 2

Using GRanges object gr created at Exercise 1:

a. Shift the ranges in gr by 1000 positions to the right.

b. What method is called when doing `shift()` on a GRanges object? Find the man page for this method.
> cvg12 <- coverage(gr12)
> cvg12

RleList of length 3
$ch1
integer-Rle of length 50000 with 4 runs
 Lengths: 15 1 4 49980
 Values : 0 1 2 0

$chMT
integer-Rle of length 800 with 4 runs
 Lengths: 17 1 2 780
 Values : 0 1 2 0

$ch2
integer-Rle of length 7 with 3 runs
 Lengths: 1 5 1
 Values : 1 3 2
Coverage (continued)

> mean(cvg12)
 ch1 chMT ch2
0.000180 0.006250 2.571429

> max(cvg12)
 ch1 chMT ch2
 2 2 3
Slicing the coverage

```r
> s112 <- slice(cvg12, lower=1)
> s112
RleViewsList object of length 3:
$ch1
Views on a 50000-length Rle subject
views:
   start end width
[1] 16 20 5 [1 2 2 2 2]

$chMT
Views on a 800-length Rle subject
views:
   start end width
[1] 18 20 3 [1 2 2]

$ch2
Views on a 7-length Rle subject
views:
   start end width
[1] 1 7 7 [1 3 3 3 3 2]

> elementNROWS(s112)
   ch1 chMT ch2
 1 1 1

> s112$chMT
Views on a 800-length Rle subject
views:
   start end width
[1] 18 20 3 [1 2 2]
```

Load aligned reads from a BAM file:

```r
> library(pasillaBamSubset)
> untreated1_chr4()

> library(GenomicAlignments)
> reads <- readGAlignments(untreated1_chr4())

and store them in a GRanges object:

```r
> reads <- as(reads, "GRanges")
> reads[1:4]

GRanges object with 4 ranges and 0 metadata columns:
 seqnames ranges strand
 <Rle> <IRanges> <Rle>
[1] chr4 892-966 -
[2] chr4 919-993 -
[3] chr4 924-998 +
[4] chr4 936-1010 +
```

seqinfo: 8 sequences from an unspecified genome
findOverlaps() (continued)

Load the gene ranges from a *TxDb* package:

```r
> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
> dm3_genes <- genes(txdb)
```

and find the overlaps between the reads and the genes:

```r
> hits <- findOverlaps(reads, dm3_genes)
> head(hits)
```

Hits object with 6 hits and 0 metadata columns:

```
 queryHits subjectHits
 <integer> <integer>
[1] 6296 11499
[2] 6304 11499
[3] 6305 11499
[4] 6310 11499
[5] 6311 11499
[6] 6312 11499
```

queryLength: 204355 / subjectLength: 15682
Exercise 3

a. Recreate GRanges objects reads and dm3_genes from previous slides.

b. What method is called when calling `findOverlaps()` on them? Open the man page for this method.

c. Find the overlaps between the 2 objects but this time the strand should be ignored.
In this exercise we want to get the exon sequences for the dm3 genome.

a. Extract the exon ranges from txdb.

b. Load the `BSgenome.Dmelanogaster.UCSC.dm3` package.

c. Use `getSeq()` to extract the exon sequences from the `BSgenome` object in `BSgenome.Dmelanogaster.UCSC.dm3`. 
The GRangesList class is a container for...

storing a list of compatible GRanges objects.

compatible means:

▶ they are relative to the same genome,
▶ AND they have the same metadata columns (accessible with the `mcols()` accessor).
The `GRangesList()` constructor

```r
> grl <- GRangesList(gr3, gr2)
> grl
GRangesList object of length 2:
[[1]]
GRanges object with 5 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 35016-35020 - | 11 1.0
B ch1 17-20 - | 12 0.8
C chMT 18-134 + | 13 0.6
D chMT 19-20 - | 14 0.4
F chMT 121-237 + | 16 0.0

seqinfo: 3 sequences from an unspecified genome

[[2]]
GRanges object with 3 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
ch2 2-7 * | 15 0.0
ch2 1-6 * | 14 0.2
ch2 2-7 * | 13 0.4

seqinfo: 3 sequences from an unspecified genome
```
GRangesList accessors

> length(grl)
[1] 2

> seqnames(grl)
RleList of length 2
[[1]]
factor-Rle of length 5 with 2 runs
   Lengths:  2  3
   Values : ch1  chMT
Levels(3): ch1  chMT  ch2

[[2]]
factor-Rle of length 3 with 1 run
   Lengths:  3
   Values : ch2
Levels(3): ch1  chMT  ch2

> strand(grl)
RleList of length 2
[[1]]
factor-Rle of length 5 with 4 runs
   Lengths:  2  1  1  1
   Values :  -  +  -  +
Levels(3):  +  -  *

[[2]]
factor-Rle of length 3 with 1 run
   Lengths:  3
   Values : *
Levels(3):  +  -  *
GRangesList accessors (continued)

```r
> ranges(grl)
IRangesList object of length 2:
[[1]]
IRanges object with 5 ranges and 0 metadata

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>width</th>
</tr>
</thead>
<tbody>
<tr>
<td>35016</td>
<td>35020</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>134</td>
<td>117</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>121</td>
<td>237</td>
<td>117</td>
</tr>
</tbody>
</table>

[[2]]
IRanges object with 3 ranges and 0 metadata

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>width</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

> start(grl)
IntegerList of length 2
[[1]] 35016 17 18 19 121
[[2]] 2 1 2

> end(grl)
IntegerList of length 2
[[1]] 35020 20 134 20 237
[[2]] 7 6 7

> width(grl)
IntegerList of length 2
[[1]] 5 4 117 2 117
[[2]] 6 6 6
```
GRangesList accessors (continued)

```r
> names(grl) <- c("TX1", "TX2")
> grl

GRangesList object of length 2:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 35016-35020</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1 17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT 18-134</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT 19-20</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT 121-237</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$TX2

GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
> mcols(grl)$geneid <- c("GENE1", "GENE2")
> mcols(grl)

DataFrame with 2 rows and 1 column
geneid
 <character>
TX1 GENE1
TX2 GENE2

> grl

GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 35016-35020</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1 17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT 18-134</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT 19-20</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT 121-237</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
GRangesList accessors (continued)

> seqinfo(grl)

Seqinfo object with 3 sequences from an unspecified genome:

```
seqnames seqlengths isCircular genome
ch1    50000    NA   <NA>
chMT    800     NA   <NA>
ch2     NA      NA   <NA>
```
Vector operations on GRangesList objects

Only the following vector operations are supported on GRangesList objects:

- `length()`, `names()`
- Single-bracket subsetting: `[]`
- Combining: `c()`
Vector operations on GRangesList objects

```r
> gr1[c("TX2", "TX1")]
GRangesList object of length 2:

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;numeric&gt;</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 35016-35020</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1 17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT 18-134</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT 19-20</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT 121-237</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
```
Vector operations on GRangesList objects (continued)

```r
> c(gr1, GRangesList(gr3))
GRangesList object of length 3:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 35016-35020</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1 17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT 18-134</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT 19-20</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT 121-237</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

[[3]]

GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 35016-35020</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1 17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT 18-134</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT 19-20</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT 121-237</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
List operations on GRangesList objects

What we call list operations are operations that work on an ordinary list:

- Double-bracket subsetting: `[[`
- `elementNROWS()`, `unlist()`
- `lapply()`, `sapply()`, `endoapply()`
- `mendoapply()` (not covered in this presentation)

GRangesList objects support all these list operations ⇒ They’re considered list-like objects.
elementNROWS() and unlist()

```
> grl[[2]]
GRanges object with 3 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 ch2 2-7 * | 15 0.0
 ch2 1-6 * | 14 0.2
 ch2 2-7 * | 13 0.4

seqinfo: 3 sequences from an unspecified genome

> elementNROWS(grl)
TX1 TX2
 5 3

> unlisted <- unlist(grl, use.names=FALSE) # same as c(grl[[1]], grl[[2]])
> unlisted
GRanges object with 8 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 A ch1 35016-35020 - | 11 1.0
 B ch1 17-20 - | 12 0.8
 C chMT 18-134 + | 13 0.6

 ch2 2-7 * | 15 0.0
 ch2 1-6 * | 14 0.2
 ch2 2-7 * | 13 0.4

seqinfo: 3 sequences from an unspecified genome
```
> grl100 <- relist(shift(unlisted, 100), grl)
> grl100

GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1</td>
<td>35116-35120</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>117-120</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>118-234</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>119-120</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>221-337</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch2</td>
<td>102-107</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>101-106</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>102-107</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome
```r
> grl100b <- endoapply(grl, shift, 100)
> grl100b
GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 A ch1 35116-35120 - | 11 1.0
 B ch1 117-120 - | 12 0.8
 C chMT 118-234 + | 13 0.6
 D chMT 119-120 - | 14 0.4
 F chMT 221-337 + | 16 0.0

seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:
 seqnames ranges strand | score GC
 <Rle> <IRanges> <Rle> | <integer> <numeric>
 ch2 102-107 * | 15 0.0
 ch2 101-106 * | 14 0.2
 ch2 102-107 * | 13 0.4

seqinfo: 3 sequences from an unspecified genome

> mcols(grl100)
DataFrame with 2 rows and 0 columns

> mcols(grl100b)
DataFrame with 2 rows and 1 column
geneid
 <character>
 TX1 GENE1
 TX2 GENE2
```
Range-based operations on GRangesList objects

> grl
GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;integer&gt;</td>
</tr>
<tr>
<td>A</td>
<td>ch1</td>
<td>35016-35020</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>17-20</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>18-134</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>19-20</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>121-237</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

-------

seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;integer&gt;</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

-------

seqinfo: 3 sequences from an unspecified genome

> shift(grl, 100)
GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;integer&gt;</td>
</tr>
<tr>
<td>A</td>
<td>ch1</td>
<td>35116-35120</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>ch1</td>
<td>117-120</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>chMT</td>
<td>118-234</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>chMT</td>
<td>119-120</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>chMT</td>
<td>221-337</td>
<td>+</td>
<td>16</td>
</tr>
</tbody>
</table>

-------

seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;integer&gt;</td>
</tr>
<tr>
<td>ch2</td>
<td>102-107</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>101-106</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>102-107</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

-------

seqinfo: 3 sequences from an unspecified genome

shift(grl, 100) is equivalent to endoapply(grl, shift, 100)
Range-based operations on GRangesList objects (continued)

> grl
GRangesList object of length 2:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt; &lt;IRanges&gt; &lt;Rle&gt;</td>
<td>&lt;integer&gt; &lt;numeric&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>ch1 35016-35020</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1 17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT 18-134</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT 19-20</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT 121-237</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt; &lt;IRanges&gt; &lt;Rle&gt;</td>
<td>&lt;integer&gt; &lt;numeric&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>1-6</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>2-7</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

> flank(grl, 10)
GRangesList object of length 2:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt; &lt;IRanges&gt; &lt;Rle&gt;</td>
<td>&lt;integer&gt; &lt;numeric&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>ch1 35016-35020</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1 17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT 8-17</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT 21-30</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT 111-120</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;Rle&gt; &lt;IRanges&gt; &lt;Rle&gt;</td>
<td>&lt;integer&gt; &lt;numeric&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch2</td>
<td>-8-1</td>
<td>*</td>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>ch2</td>
<td>-9-0</td>
<td>*</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>ch2</td>
<td>-8-1</td>
<td>*</td>
<td>13</td>
<td>0.4</td>
</tr>
</tbody>
</table>

seqinfo: 3 sequences from an unspecified genome

flank(grl, 10) is equivalent to endoapply(grl, flank, 10)
Range-based operations on GRangesList objects (continued)

> grl
GRangesList object of length 2:

$TX1
GRanges object with 5 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>score</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 35016-35020</td>
<td>-</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>ch1 17-20</td>
<td>-</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>chMT 18-134</td>
<td>+</td>
<td>13</td>
<td>0.6</td>
</tr>
<tr>
<td>D</td>
<td>chMT 19-20</td>
<td>-</td>
<td>14</td>
<td>0.4</td>
</tr>
<tr>
<td>F</td>
<td>chMT 121-237</td>
<td>+</td>
<td>16</td>
<td>0.0</td>
</tr>
</tbody>
</table>

-------
seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 17-35020</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>chMT 18-237</td>
<td>+</td>
</tr>
<tr>
<td>C</td>
<td>chMT 19-20</td>
<td>-</td>
</tr>
</tbody>
</table>

-------
seqinfo: 3 sequences from an unspecified genome

> range(grl)
GRangesList object of length 2:

$TX1
GRanges object with 3 ranges and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch1 17-35020</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>chMT 18-237</td>
<td>+</td>
</tr>
<tr>
<td>C</td>
<td>chMT 19-20</td>
<td>-</td>
</tr>
</tbody>
</table>

-------
seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 1 range and 0 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ch2 1-7</td>
<td>*</td>
</tr>
</tbody>
</table>

-------
seqinfo: 3 sequences from an unspecified genome

range(grl) is equivalent to endoapply(grl, range)
Range-based operations on GRangesList objects (continued)

> grl
GRangesList object of length 2:
$TX1
GRanges object with 5 ranges and 2 metadata columns:
> $TX1

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 35016-35020 - | 11 1.0
B ch1 17-20 - | 12 0.8
C chMT 18-134 + | 13 0.6
D chMT 19-20 - | 14 0.4
F chMT 121-237 + | 16 0.0
-------
seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 3 ranges and 2 metadata columns:
> $TX2

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>
ch2 2-7 * | 15 0.0
ch2 1-6 * | 14 0.2
ch2 2-7 * | 13 0.4
-------
seqinfo: 3 sequences from an unspecified genome

> reduce(grl)
GRangesList object of length 2:
$TX1
GRanges object with 4 ranges and 0 metadata columns:
> $TX1

seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] ch1 17-20 -
[2] ch1 35016-35020 -
[4] chMT 19-20 -
-------
seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 1 range and 0 metadata columns:
> $TX2

seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] ch2 1-7 *
-------
seqinfo: 3 sequences from an unspecified genome

reduce(grl) is equivalent to endoapply(grl, reduce)
> grl2
GRangesList object of length 2:
$TX1
GRanges object with 1 range and 2 metadata columns:
  seqnames   ranges   strand   score   GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  C       chMT    18-134   +   |    13   0.6
-------
seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 1 range and 2 metadata columns:
  seqnames   ranges   strand   score   GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  ch2       2-7      *   |    15   0
-------
seqinfo: 3 sequences from an unspecified genome

> grl3
GRangesList object of length 2:
[[1]]
GRanges object with 1 range and 2 metadata columns:
  seqnames   ranges   strand   score   GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  chMT      22-130   +   |    13   0.6
-------
seqinfo: 3 sequences from an unspecified genome

[[2]]
GRanges object with 1 range and 2 metadata columns:
  seqnames   ranges   strand   score   GC
  <Rle> <IRanges> <Rle> | <integer> <numeric>
  ch2       2-7      *   |    15   0
-------
seqinfo: 3 sequences from an unspecified genome

> setdiff(grl2, grl3)
GRangesList object of length 2:
$TX1
GRanges object with 2 ranges and 0 metadata columns:
  seqnames   ranges   strand
  <Rle> <IRanges> <Rle>
[1]   chMT    18-21   +
[2]   chMT    131-134   +
-------
seqinfo: 3 sequences from an unspecified genome

$TX2
GRanges object with 0 ranges and 0 metadata columns:
  seqnames   ranges   strand
  <Rle> <IRanges> <Rle>
-------
seqinfo: 3 sequences from an unspecified genome

> setdiff(grl2, grl)
is equivalent to
mendoapply(setdiff, grl2, grl)

- Vignettes in the `GenomicRanges` package (`browseVignettes("GenomicRanges")`).
- `GRanges` and `GRangesList` man pages in the `GenomicRanges` package.
- Vignettes and GAlignments man page in the `GenomicAlignments` package.
- Bioconductor support site: [http://support.bioconductor.org/](http://support.bioconductor.org/)