
An Introduction to Some Graphics in Bioconductor

June 4, 2003

Introduction

We first need to set up the basic data regarding the genome of interest. The chrom-

Location class describes the necessary components for plotting expression data in its
chromosomal location. To do the plotting we need to know how many chromosomes
there are, what their lengths are and various other pieces of information. Additionally
mappings from the probe identifiers to chromosomes and specific locations on chro-
mosomes is also needed. These data are all contained in the Bioconductor meta-data
packages and one of these packages can be used to create an instance of the chromLo-

cation class.More details on how to do this and examples are given in the vignettes for
the geneplotter package.

> library(annotate)

> library(geneplotter)

> library(hgu95av2)

> newChrom <- buildChromLocation("hgu95av2")

> newChrom

Instance of a chromLocation class with the following fields:

Organism: human

Data source: hgu95av2

Number of chromosomes for this organism: 24

Chromosomes of this organism and their lengths in base pairs:

1 : 245172244

2 : 242772882

3 : 199087371

4 : 191589910

5 : 180746422

6 : 170567309

7 : 158124502

8 : 145883541

9 : 134075627

1

10 : 135284517

11 : 134282883

12 : 133383967

13 : 114069855

14 : 105231991

15 : 99787871

16 : 89825221

17 : 81318073

18 : 77653635

19 : 63750318

20 : 63567468

21 : 46913208

22 : 49339342

X : 152601851

Y : 50314613

Whole Genome Plots

We have a number of different plotting features available to us. The functions cPlot and
cColor provide plots where the chromosomes are laid out (3’ to 5’) in a linear fashion
and the genes are displayed as short perpendicular lines. Lines that go up indicate genes
that are located on the sense strand while lines that go down indicate genes that are
located on the antisense strand. The perpendicular lines can be colored differently. In
some cases you could color those genes high in one group red and those that were highly
expressed in another group blue.

You can plot all chromosomes for an organism or any selected subset of the chromo-
somes. Chromosomes can be rendered using their relative lengths or scaled to fill the
whole plot. Again, more details are available in the manual pages and the vignettes of
the geneplotter package.

2

human
C

hr
om

os
om

es

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
X
Y

Specific genes can be plotted in color if desired. We can now add the locations of the
genes contained in the test data set eset. Alternatively, you can restrict attention to just

3

a specific set of chromosomes.

human

C
hr

om
os

om
es

1

2

In this next plot we show the differences between the two scalings that can be used
for the chromosomes. These are relative and max, where all chromosomes are presented
as being the same length.

> par(mfrow = c(2, 1))

> for (sc in c("max", "relative")) cPlot(newChrom, fg = "blue",

+ scale = sc)

4

human

C
hr

om
os

om
es

123
456
789

10111213141516171819202122XY

human

C
hr

om
os

om
es

123
456
789

10111213141516171819202122XY

There are many other sources of information that could be easily added to these plots.
Particularly things such as indicating syntenic regions, regions of high GC content, or
CpG islands could all be added to these plots.

1 Single Chromosome Plotting

Another type of plot that is sometimes of use is provided by alongChrom. The purpose of
this plot is to show gene expression values in certain selected regions of a chromosome.
Researchers might be interested in regions with known genetic defects or suspected
amplifications and deletions.

> cols <- c("red", "green", "blue")

> cols <- cols[eset$cov3]

> par(mfrow = c(3, 2))

> alongChrom(eset, "1", newChrom, xloc = "equispaced", plotFormat = "cumulative",

+ col = cols, lwd = 2)

<environment: 0xa98ef8c>

5

> alongChrom(eset, "1", newChrom, xloc = "physical", col = cols,

+ lwd = 2)

<environment: 0xa8d98b4>

> alongChrom(eset, "1", newChrom, xloc = "equispaced", plotFormat = "local",

+ col = cols, lwd = 2)

> alongChrom(eset, "1", newChrom, xloc = "equispaced", plotFormat = "local",

+ col = cols, type = "p", pch = 16)

> alongChrom(eset, "1", newChrom, xlim = c(87511280, 127717880),

+ xloc = "equispaced", plotFormat = "local", col = cols, type = "p",

+ pch = 16)

> alongChrom(eset, "1", newChrom, xloc = "equispaced", plotFormat = "image")

0
40

00

Cumulative expression levels by genes in chromosome 1
 scaling method: none

Representative Genes

C
um

ul
at

iv
e

ex
pr

es
si

on
 le

ve
ls

31
64

1_
s_

at
31

54
0_

at
31

61
7_

at
31

47
8_

at
31

69
4_

at
31

69
5_

g_
at

31
59

8_
s_

at
31

43
9_

f_
at

31
58

3_
at

31
61

0_
at

31
45

7_
at

31
56

9_
at

31
71

7_
at

31
71

4_
at

31
37

1_
at

31
62

4_
at

31
53

3_
s_

at
31

50
8_

at
31

66
2_

at
31

68
8_

at
31

49
9_

s_
at

31
49

5_
at

31
49

6_
g_

at
31

59
1_

s_
at

31
47

0_
at

31
73

7_
at

31
34

2_
at

+ + + − + + + − − + − − + +

0
40

00
Cumulative expression levels in chromosome 1 by relative position

 scaling method: none

Representative Genes

C
um

ul
at

iv
e

ex
pr

es
si

on
 le

ve
ls

31
64

1_
s_

at
31

54
0_

at
31

61
7_

at
31

47
8_

at
31

69
4_

at
31

69
5_

g_
at

31
59

8_
s_

at
31

43
9_

f_
at

31
58

3_
at

31
61

0_
at

31
45

7_
at

31
56

9_
at

31
71

7_
at

31
71

4_
at

31
37

1_
at

31
62

4_
at

31
53

3_
s_

at

31
50

8_
at

31
66

2_
at

31
68

8_
at

31
49

9_
s_

at
31

49
5_

at
31

49
6_

g_
at

31
59

1_
s_

at
31

47
0_

at

31
73

7_
at

31
34

2_
at

+ + + + − − + − + −

●

●

●
●
●

●●
●●

● ● ● ● ● ● ● ● ●●

●

●0
20

00

Expression levels by genes in chromosome 1
 scaling method: none

Representative Genes

E
xp

re
ss

io
n

le
ve

ls

31
64

1_
s_

at
31

54
0_

at
31

61
7_

at
31

47
8_

at
31

69
4_

at
31

69
5_

g_
at

31
59

8_
s_

at
31

43
9_

f_
at

31
58

3_
at

31
61

0_
at

31
45

7_
at

31
56

9_
at

31
71

7_
at

31
71

4_
at

31
37

1_
at

31
62

4_
at

31
53

3_
s_

at
31

50
8_

at
31

66
2_

at
31

68
8_

at
31

49
9_

s_
at

31
49

5_
at

31
49

6_
g_

at
31

59
1_

s_
at

31
47

0_
at

31
73

7_
at

31
34

2_
at

+ + + − + + + − − + − − + +

●

●

●
●
●

●●
●●

● ● ● ● ● ● ● ● ●●

●

●0
20

00

Expression levels by genes in chromosome 1
 scaling method: none

Representative Genes

E
xp

re
ss

io
n

le
ve

ls

31
64

1_
s_

at
31

54
0_

at
31

61
7_

at
31

47
8_

at
31

69
4_

at
31

69
5_

g_
at

31
59

8_
s_

at
31

43
9_

f_
at

31
58

3_
at

31
61

0_
at

31
45

7_
at

31
56

9_
at

31
71

7_
at

31
71

4_
at

31
37

1_
at

31
62

4_
at

31
53

3_
s_

at
31

50
8_

at
31

66
2_

at
31

68
8_

at
31

49
9_

s_
at

31
49

5_
at

31
49

6_
g_

at
31

59
1_

s_
at

31
47

0_
at

31
73

7_
at

31
34

2_
at

+ + + − + + + − − + − − + +

● ●0
10

00
25

00

Expression levels by genes in chromosome 1
 scaling method: none

Representative Genes

E
xp

re
ss

io
n

le
ve

ls

31
37

1_
at

31
62

4_
at

31
53

3_
s_

at

31
50

8_
at

− − − +

Samples by genes in chromosome 1
 scaling method: none

Representative Genes

S
am

pl
es

A
G

N
T

Z

31
64

1_
s_

at
31

54
0_

at
31

61
7_

at
31

47
8_

at
31

69
4_

at
31

69
5_

g_
at

31
59

8_
s_

at
31

43
9_

f_
at

31
58

3_
at

31
61

0_
at

31
45

7_
at

31
56

9_
at

31
71

7_
at

31
71

4_
at

31
37

1_
at

31
62

4_
at

31
53

3_
s_

at
31

50
8_

at
31

66
2_

at
31

68
8_

at
31

49
9_

s_
at

31
49

5_
at

31
49

6_
g_

at
31

59
1_

s_
at

31
47

0_
at

31
73

7_
at

31
34

2_
at

+ + + − + + + − − + − − + +

2 Heatmaps and other tools

As of release 1.7.0 of R there is a heatmap function available. Heatmaps are interesting
data displays made popular for genomic data by ?. The ideas are older and can be seen

6

in work of Bertin (and other sources).
Basically a heatmap is a false color display where the rows and the columns have

been permuted to show interesting patterns. In the R implementation the ordering is
carried out by sorting the data using a hierarchical clustering algorithm.

In the code segment below we extract the expression values from the test data set,
eset, and then get meaningful names for the genes. We do this by finding the mapping
between the probe identifiers that are stored with the data and the gene symbols.

The dendrograms on the top and side are created by the clutering function. By
default this is hierarchical clustering with complete linkage.

> data(eset)

> Exprs <- exprs(eset)

> gN <- geneNames(eset)

> syms <- getSYMBOL(gN, "hgu95av2")

> syms <- ifelse(is.na(syms), gN, syms)

> row.names(Exprs) <- syms

> heatmap(Exprs[1:100,], col = rev(dChip.colors(50)))

Z Q X S D J O M C G V U R B P Y E H N T A W F L I K

AFFX−hum_alu_atIGLJ3STAT131326_atAFFX−BioDn−3_atAFFX−M27830_M_atSTAT1STAT1AFFX−YEL021w/URA3_atGNRH2AFFX−M27830_3_atAFFX−HUMRGE/M10098_M_atAFFX−BioDn−5_stLOC51047PI1531317_r_atIGKV2OR22−4AFFX−HUMRGE/M10098_5_at31323_r_atTFRC6H9AIGHMGLRA1ATP6V1A2VN1R1AFFX−BioDn−5_atAFFX−TrpnX−3_atGPR4531318_at31309_r_atPSORTTnfrsf6AFFX−PheX−3_atAFFX−BioB−M_stSPAR1D12ATRA@AFFX−PheX−5_at31329_atTLL1AFFX−BioB−5_stIl4AFFX−ThrX−3_atAFFX−PheX−M_atAFFX−BioC−3_atAFFX−HUMRGE/M10098_3_atAFFX−YEL018w/_atAFFX−ThrX−M_atAFFX−DapX−3_atAFFX−DapX−5_atAFFX−LysX−5_atAFFX−LysX−M_atTFRCTFRCGAPDAFFX−CreX−3_stGAPD31325_atAFFX−TrpnX−M_atAFFX−CreX−5_atLOC51049AFFX−BioB−5_atAFFX−BioB−M_atAFFX−YEL002c/WBP1_atBMP3AFFX−BioC−3_stAFFX−YEL024w/RIP1_atAFFX−BioC−5_atAFFX−CreX−3_atIl1031324_atAFFX−ThrX−5_atAFFX−DapX−M_atAFFX−TrpnX−5_atAFFX−M27830_5_atIl2ACTBAFFX−BioC−5_stGPR12MGAT5SLC34A1KCNB2INGAPSTAT1AFFX−BioB−3_stAFFX−LysX−3_atAFFX−CreX−5_stGAPDACTBAFFX−BioB−3_atAFFX−BioDn−3_st31311_atACTBGAPDRPS19GAPDACTBACTBGAPDACTB

7

We can change the behavior by simply defining a function that will do single linkage
clustering. Notice the usual oddities of single-linkage clustering. The plot suggests that
there is a group of about 5 genes that are quite close to each other (at the top) and one off
by itself at the bottom. Additionally, one of the samples seems rather far from the others.
Single linkage clustering is a good mechanism for finding outliers – and hence is probably

a plot worth examining.

Z Q H N P B L Y K I
W F G X T E S J D M O R V A C U

AFFX−hum_alu_at
STAT1
AFFX−BioDn−3_at
STAT1
STAT1
STAT1
AFFX−BioB−3_at
AFFX−BioDn−3_st
AFFX−BioB−3_st
AFFX−HUMRGE/M10098_M_at
AFFX−BioDn−5_st
AFFX−HUMRGE/M10098_5_at
Il2
AFFX−LysX−3_at
AFFX−CreX−5_st
AFFX−BioC−5_st
Il10
AFFX−BioC−3_st
AFFX−ThrX−5_at
AFFX−DapX−M_at
AFFX−TrpnX−5_at
AFFX−PheX−3_at
AFFX−CreX−3_st
AFFX−CreX−3_at
AFFX−TrpnX−M_at
AFFX−PheX−M_at
AFFX−BioC−5_at
AFFX−BioB−5_at
AFFX−BioB−M_at
AFFX−BioB−M_st
AFFX−HUMRGE/M10098_3_at
AFFX−BioDn−5_at
AFFX−TrpnX−3_at
Tnfrsf6
AFFX−BioC−3_at
AFFX−PheX−5_at
AFFX−CreX−5_at
AFFX−DapX−5_at
AFFX−LysX−5_at
AFFX−LysX−M_at
AFFX−BioB−5_st
Il4
AFFX−ThrX−3_at
AFFX−ThrX−M_at
AFFX−DapX−3_at
ACTB
ACTB
GAPD
GAPD
GAPD

As for the other R functions, there are a host of options that you can set and control.
The clustering mechanism, the distance metric used. You can supply your own row or
column dendrograms and directly manipulate the plots.

Choosing a good set of colors is an important part of the construction of any vi-
sualization tool. We recommend that you look at the work of Cynthia Brewer (www.
colorbrewer.org) as a source of reasonable palettes. Her work is also available in the
package RColorBrewer available from CRAN.

Visualizing Distances

For microarray data and many other types of experimental data you will want to apply
different machine learning algorithms during the analysis. All such algorithms (either

8

www.colorbrewer.org
www.colorbrewer.org

clustering or classification) depend on some notion of distance between the objects being
clustered or classified. There is no a priori best distance. You will need to carefully
consider the metric that is best for the data and the classifier being used.

The resulting pairwise distances can be hard to comprehend and use. In this sec-
tion we consider different methods of visualizing distances. We consider three different
techniques that have proven useful.

• Plotting the pairwise distance matrix using image or the ellipse package.

• Using multidimensional scaling to reduce the dimensionality.

• Using the heatmap function on the pairwise distances.

Again, we will carry use the example data in eset to demonstrate some of these
functionalities.

First we examine using the image function and the ellipse package.

> d1 <- dist(t(scale(Exprs)))

> dN <- dimnames(Exprs)[[2]]

> nS <- length(dN)

> d1M <- as.matrix(d1)

> dimnames(d1M) <- list(dN, dN)

> par(mfrow = c(1, 1))

> image(1:nS, 1:nS, d1M, col = dChip.colors(50), axes = FALSE,

+ xlab = "", ylab = "", main = "Between Sample Distances")

> axis(1, at = (1:nS), label = dN, tick = FALSE)

> axis(2, at = (1:nS), label = dN, tick = FALSE)

9

Between Sample Distances

A C E G I K M O Q S U W Y

A
C

E
G

I
K

M
O

Q
S

U
W

Y

We have been fairly
fancy in setting up this plot, but that is one of the advantages of using R as our engine
for these analyses. There are many more options that you could explore. Notice that
array R seems to be quite different from the other arrays. The colors are encoded so that
red means a large distance so we see that array R is a far from the others.

We can also see this using the ellipse package.

> library(ellipse)

> r <- cor(Exprs)

> d2M <- 1 - r

> plotcorr(r, main = "Correlation Matrix for eset data")

10

Correlation Matrix for eset data

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Here we see that
the correlation between all samples (for these genes) is positive. The tightness of the
plotted ellipse indicates the strength of the correlation. Now we see that array R has a
lower correlation with other arrays (and hence a larger distance as we saw in the previous
plot).

Finally, it is worth drawing a heatmap using the distance matrix. Here we need to
make sure that the rows (and or columns) are not scaled. Scaling within rows is the
default behavior for heatmap, but for distance matrices it is not appropriate.

> heatmap(d1M, col = dChip.colors(50), scale = "none")

11

Z R C U V G J M D S H N T X Q Y B O A F E W P L K I

Z
R
C
U
V
G
J
M
D
S
H
N
T
X
Q
Y
B
O
A
F
E
W
P
L
K
I

> heatmap(r, col = dChip.colors(50), scale = "none")

12

R Z C G V J U O N H S D T Q X M A F B Y L I K E P W

R
Z
C
G
V
J
U
O
N
H
S
D
T
Q
X
M
A
F
B
Y
L
I
K
E
P
W

13

	Single Chromosome Plotting
	Heatmaps and other tools

