Lab 3A: An Introduction to Bioconductor's marray packages

June 4, 2003

```
In this lab, we demonstrate the main functions in the marray suite of packages for diagnostic plots and normalization of two-color spotted microarray data. To load the packages
```

```
> library(marrayNorm)
```

> library(marrayNorm)
Loading required package: marrayClasses
Loading required package: marrayClasses
Creating a new generic function for "print" in package
Creating a new generic function for "print" in package
marrayClasses
marrayClasses
Creating a new generic function for "rbind" in package
Creating a new generic function for "rbind" in package
marrayClasses
marrayClasses
Creating a new generic function for "cbind" in package
Creating a new generic function for "cbind" in package
marrayClasses
marrayClasses
Loading required package: stepfun
Loading required package: stepfun
Loading required package: marrayInput
Loading required package: marrayInput
Loading required package: marrayPlots

```
Loading required package: marrayPlots
```

For a more detailed introduction, consult the package vignettes which can be listed by the command openVignette(). A demo for marrayPlots can also be accessed by demo(marrayPlots). We will work with the sample dataset swirl; for a description of swirl, type ? swirl. To load this dataset

```
> data(swirl)
```


1 Basic classes and methods: marrayClasses package

One of the main classes in marrayClasses is the marrayLayout class; it is used to keep track of important layout parameters, such as the total number of spotted probe sequences on the array, the dimensions of the spot and grid matrices, the plate origin of the probes, information on spotted control sequences. For details on this class consult the
help file, ? marrayLayout. Two other important classes are marrayRaw and marrayNorm, which represent, respectively, pre-normalization and post-normalization intensity data for a batch of spotted microarrays. Methods for manipulating instances of these classes are also described in the help files.

The object swirl is an instance of the class marrayRaw. Try the following commands to obtain information on this object
> class(swirl)

[1] "marrayRaw"

> slotNames(swirl)

[1] "maRf"	"maGf"	"maRb"	"maGb"	"maW"	"		
[7] "maGnames"	"maTargets" "maNotes"						
> swirl							
Pre-normalizati	n intensity	data:	Object of class		Raw		
Number of arrays: 4 arrays.							
A) Layout of spots on the array:							
Array layout: Object of class marrayLayout.							
Total number of	spots:				8448		
Dimensions of g	id matrix:		4 rows by 4 cols				
Dimensions of sp	ot matrices		22 rows by 24 cols				

Currently working with a subset of 8448 spots.
Control spots:
There are 2 types of controls :
Control N
7687680

Notes on layout:
No Input File
B) Samples hybridized to the array:

Object of class marrayInfo.

Currently working with a subset of 8448 spots.
Control spots:
There are 2 types of controls :
Control N
7687680

Notes on layout:
No Input File
> maGnames(swirl)
Object of class marrayInfo.

maLabels	"ID"	"Name"
geno1 control	geno1	
geno2 control	geno2	
geno3 control	geno3	
3XSSC control	3XSSC	
3XSSC control	3XSSC	
EST1 control	EST1	
geno1 control	geno1	
geno2 control	geno2	
geno3 control	geno3	
3XSSC control	3XSSC	

Number of labels: 8448
Dimensions of maInfo matrix: 8448 rows by 2 columns
Notes:
C:/GNU/R/rw1041/library/marrayInput/data/fish.gal
As with other microarray objects in Bioconductor packages, you can use subsetting commands for marrayRaw objects

```
> sw <- swirl[1:100, 2]
```

> class(sw)
[1] "marrayRaw"

```
> SW
```

Pre-normalization intensity data: Object of class marrayRaw.
Number of arrays: 1 arrays.
A) Layout of spots on the array:

Array layout: Object of class marrayLayout.

Total number of spots:
Dimensions of grid matrix:
Dimensions of spot matrices:

8448
4 rows by 4 cols 22 rows by 24 cols

Currently working with a subset of 100 spots.
Control spots:
There are 2 types of controls :
Control N
$48 \quad 52$

Notes on layout:
No Input File
B) Samples hybridized to the array:

Object of class marrayInfo.

maLabels \# of slide	Names	experiment Cy3 experiment Cy5	date		
2	82	82	swirl.2.spot	wild type	swirl 2001/9/20
comments					

Number of labels: 1
Dimensions of maInfo matrix: 1 rows by 6 columns

Notes:
C:/GNU/R/rw1041/library/marrayInput/data/SwirlSample.txt
C) Summary statistics for log-ratio distribution:

Min. 1st Qu. Median Mean 3rd Qu. Max.
swirl.2.spot -1.08 -0.26 -0.12 -0.12 01.72
D) Notes on intensity data:

You can access red and green foreground and background intensities, and log ratios as follows
> Gb <- maGb(swirl)
$>\operatorname{dim}(G b)$
[1] 84484

```
> Gb[1:5, ]
\begin{tabular}{lrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 182 & 175 & 86 & 97 \\
{\([2]\),} & 171 & 183 & 86 & 85 \\
{\([3]\),} & 153 & 183 & 86 & 85 \\
{\([4]\),} & 153 & 142 & 71 & 87 \\
{\([5]\),} & 153 & 142 & 71 & 87
\end{tabular}
> Rf <- maRf(swirl)
> dim(Rf)
[1] 8448 4
> Rf[1:5,]
\begin{tabular}{lrrrr} 
& swirl.1.spot & swirl.2.spot & swirl.3.spot & swirl.4.spot \\
{\([1]\),} & 19538.470 & 16138.720 & 2895.1600 & 14054.5400 \\
{\([2]\),} & 23619.820 & 17247.670 & 2976.6230 & 20112.2600 \\
{\([3]\),} & 21579.950 & 17317.150 & 2735.6190 & 12945.8500 \\
{\([4]\),} & 8905.143 & 6794.381 & 318.9524 & 524.0476 \\
{\([5]\),} & 8676.095 & 6043.542 & 780.6667 & 304.6190
\end{tabular}
> M <- maM(swirl)
> dim(M)
```

```
[1] 8448 4
```


2 Reading in data: marrayInput package

Functions and widgets for reading in spotted array data are provided in the marrayInput package, see for example ? read.marrayRaw or ? widget.marrayRaw.

3 Diagnostic plots: marrayPlots package

The marrayPlots package provides functions for diagnostic plots of microarray spot statistics.

To produce a spatial image of background intensities for the Cy3 channel in the third array

```
> tmp <- maImage(swirl[, 3], x = "maGb", bar = FALSE)
```


To produce a spatial image of \log ratios for the first array in the batch > tmp <- maImage(swirl[, 1], col = maPalette(low = "blue", high = "yellow"), $+\quad$ bar $=$ FALSE)

To produce boxplots of log ratios by sector for the first array in the batch
> maBoxplot(swirl[, 1])

PrintTip

To produce boxplots of log ratios by plate for the second array in the batch
> maPlate(swirl) <- maCompPlate(swirl, n = 384)
> maBoxplot(swirl[, 2], x = "maPlate", names = NULL)

Plate

For boxplots of log ratios for all four arrays
> maBoxplot(swirl)

4 Normalization: marrayNorm package

The marrayNorm package implements robust adaptive location and scale normalization procedures, which correct for different types of dye biases (e.g., intensity, spatial, plate biases).

The main location and scale normalization function is maNormMain. Simpler wrapper functions are provided in maNorm and maNormScale. The function operate on objects of class marrayRaw (or possibly marrayNorm, if normalization is performed in several steps) and return objects of class marrayNorm.

For within-print-tip-group loess location normalization of batch swirl

```
> swirl.norm <- maNormMain(swirl)
```

For boxplots of post-normalization log-ratios
> maBoxplot(swirl.norm[, 1])

PrintTip
> maBoxplot(swirl.norm)

