
Lab 4: Differential Gene Expression

June 4, 2003

In this lab, we demonstrate how to use R to find genes that are differentially expressed
in two populations. We demonstrate two useful plots, the MA-plot and the volcano plot.
For a more formal assessment, we use the multtest package for obtaining adjusted
p-values.

> library(Biobase)

> library(ctest)

> library(multtest)

> library(bioclabs)

We use expression data from an experiment where sixteen genes were spiked in at
different known concentrations in different hybridizations and are thus differentially ex-
pressed. Expression measures are stored in an exprSet object available through the
bioclabs package.

> data("eset3")

> genenames <- colnames(pData(eset3))[-1]

The concentrations of the sixteen genes in each of six hybridizations are stored in the
phenoData slot of the exprSet object eset3.

> pData(eset3)

population 37777_at 684_at 1597_at 38734_at 39058_at 36311_at

1521m99hpp_av06 0 512 1024 0.00 0.25 0.5 1

1521q99hpp_av06 1 1024 0 0.25 0.50 1.0 2

1532m99hpp_av04 0 512 1024 0.00 0.25 0.5 1

1532q99hpp_av04 1 1024 0 0.25 0.50 1.0 2

2353m99hpp_av08 0 512 1024 0.00 0.25 0.5 1

2353q99hpp_av08 1 1024 0 0.25 0.50 1.0 2

36889_at 1024_at 36202_at 36085_at 40322_at 407_at 1091_at

1521m99hpp_av06 2 4 8 16 32 512 128

1521q99hpp_av06 4 8 16 32 64 1024 256
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1532m99hpp_av04 2 4 8 16 32 512 128

1532q99hpp_av04 4 8 16 32 64 1024 256

2353m99hpp_av08 2 4 8 16 32 512 128

2353q99hpp_av08 4 8 16 32 64 1024 256

1708_at 33818_at 546_at

1521m99hpp_av06 256 32 8

1521q99hpp_av06 512 64 16

1532m99hpp_av04 256 32 8

1532q99hpp_av04 512 64 16

2353m99hpp_av08 256 32 8

2353q99hpp_av08 512 64 16

Notice there are two populations and 3 replicates in each. We are interested in identifying
genes that are differentially expressed in these two populations.

Let us create a matrix containing for each of the 12626 genes on the HGU95a chip
(note this really is A and not Av2), its A-value or average log intensity, its M-value or
difference of log intensities (log ratio), its two-sample t-statistic, and its nominal p-value
from the t-distribution. The rows of the scores matrix correspond to genes and the
columns to the four different types of statistics.

The data have already been transformed to the log scale. Base 2 logarithms were
used.

> Index1 <- which(eset3$population == 0)

> Index2 <- which(eset3$population == 1)

> scores <- esApply(eset3, 1, function(x) {

+ tmp <- t.test(x[Index2], x[Index1], var.equal = TRUE)

+ c(mean(tmp$estimate), -diff(tmp$estimate), tmp$statistic,

+ tmp$p.value)

+ })

> scores <- t(scores)

> colnames(scores) <- c("A", "M", "t.stat", "p.value")

The following commands produce an MA-plot of the differences of log intensities in
the two populations, M, vs. the average log intensities, A.

> plot(scores[, 1], scores[, 2], xlab = "A", ylab = "M", pch = ".")

> text(scores[genenames, 1], scores[genenames, 2], genenames, col = 1:16)

> abline(h = c(-1, 1))
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In the MA-plot, points with large vertical deviations (absolute M-values) suggest
differentially expressed genes. The horizontal lines show the typical two-fold-change
cutoff (because the expression data are on a log 2 scale). The colored symbols correspond
to the sixteen genes that are truly differentially expressed, i.e., were spiked in at different
concentrations. Other points with large M-values correspond to false positives. One of
the sixteen known genes has a low M-value, corresponding to a false negative (1597_at).
Based on our knowledge of the concentrations for each of the sixteen genes, one expects
only one of these genes (684_at) to have a negative M-value, i.e., higher expression
measure in population 0 than 1 (infinitely more abundant in population 0). This is
indeed the point with the very low M-value.

Should we take the variability of the estimates into account? There are only 3
replicates but we can try a t-test. The following is a so-called volcano plot of the t-
statistic vs. the numerator of the t-statistic, or M-value. Genes in the top left and
right corners of the plot correspond to genes with both large absolute differences and
large relative (to standard error) differences in expression between the two populations.
Although the sixteen known genes tend to have large absolute t-statistics, they standout
more in terms of their M-values.
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In other situations you may have seen the volcano plot defined as a plot of minus the
base 10 logarithm of the data versus fold change. The two versions (ours and this one)
are equivalent since all t-statistics are based on the same number of degrees of freedom.

> plot(scores[, 2], abs(scores[, 3]), xlab = "M", ylab = "t.stat",

+ pch = ".")

> points(scores[genenames, 2], abs(scores[genenames, 3]), pch = 16,

+ col = 1:16)

> abline(v = c(-1, 1))

> a <- qt(0.975, 4)

> abline(h = a)
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Note that the gene with small M value really distorts our visual impression of the
data. In order to remove that effect we replot the data with new limits. For a close-up,
simply change the xlim and ylim.

> plot(scores[, 2], abs(scores[, 3]), xlab = "M", ylab = "t.stat",

+ pch = ".", xlim = c(-1.5, 1.5), ylim = c(0, 15))

> text(scores[genenames, 2], abs(scores[genenames, 3]), genenames,
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+ col = 1:16)

> abline(v = c(-1, 1))

> a <- qt(0.975, 4)

> abline(h = a)
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How many genes have p-values less than 0.05? How about 0.01?

> sum(scores[, "p.value"] <= 0.05)

[1] 336

> sum(scores[, "p.value"] <= 0.01)

[1] 74

One can adjust the p-values to account for multiple hypothesis testing using the
multtest package. The function mt.rawp2adjp gives adjusted p-values according to var-
ious methods using only the raw p-values.
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> tmp <- mt.rawp2adjp(scores[, 4])

> adj.p.values <- tmp$adjp[order(tmp$index), -1]

> scores <- cbind(scores, adj.p.values)

The function maxT computes permutation adjusted p-values for the Westfall & Young
step-down maxT procedure. One needs to use the original data again. Similarly, for the
step-down minP procedure, one can use the function mt.minP.

> tmp <- mt.maxT(exprs(eset3), eset3$population)

We’ll do complete enumerations

> scores <- cbind(scores, tmp$adjp[order(tmp$index)])

> colnames(scores)[12] <- "maxT"

Let’s see how we fared with the sixteen known to be differentially expressed genes.

> round(scores[genenames, ], 2)

A M t.stat p.value Bonferroni Holm Hochberg SidakSS SidakSD

37777_at 12.74 0.23 6.53 0.00 1.00 1.00 1.00 1.00 1.00

684_at 9.89 -7.13 -51.79 0.00 0.01 0.01 0.01 0.01 0.01

1597_at 6.91 0.11 2.20 0.09 1.00 1.00 1.00 1.00 1.00

38734_at 5.57 0.56 6.48 0.00 1.00 1.00 1.00 1.00 1.00

39058_at 6.86 0.42 6.12 0.00 1.00 1.00 1.00 1.00 1.00

36311_at 7.04 0.73 4.96 0.01 1.00 1.00 1.00 1.00 1.00

36889_at 5.71 0.55 3.71 0.02 1.00 1.00 1.00 1.00 1.00

1024_at 8.26 0.74 3.30 0.03 1.00 1.00 1.00 1.00 1.00

36202_at 8.10 0.79 5.76 0.00 1.00 1.00 1.00 1.00 1.00

36085_at 10.77 0.86 6.20 0.00 1.00 1.00 1.00 1.00 1.00

40322_at 12.28 0.53 5.16 0.01 1.00 1.00 1.00 1.00 1.00

407_at 11.96 0.26 8.49 0.00 1.00 1.00 1.00 1.00 1.00

1091_at 12.59 0.50 6.36 0.00 1.00 1.00 1.00 1.00 1.00

1708_at 12.01 0.37 7.47 0.00 1.00 1.00 1.00 1.00 1.00

33818_at 11.21 0.79 8.89 0.00 1.00 1.00 1.00 1.00 1.00

546_at 6.75 0.87 6.49 0.00 1.00 1.00 1.00 1.00 1.00

BH BY maxT

37777_at 1.00 1.00 1.0

684_at 0.01 0.11 0.2

1597_at 1.00 1.00 1.0

38734_at 1.00 1.00 1.0

39058_at 1.00 1.00 1.0

36311_at 1.00 1.00 1.0

36889_at 1.00 1.00 1.0
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1024_at 1.00 1.00 1.0

36202_at 1.00 1.00 1.0

36085_at 1.00 1.00 1.0

40322_at 1.00 1.00 1.0

407_at 1.00 1.00 1.0

1091_at 1.00 1.00 1.0

1708_at 1.00 1.00 1.0

33818_at 1.00 1.00 1.0

546_at 1.00 1.00 1.0

One can make some pretty substantial arguments against this procedure. Make an
adjustment for all 12626 probes is probably not appropriate in any situation and is
certainly hard to support here. These data arose from a designed experiment where
we know which genes are going to change. Not all 12626 were candidates for change.
In a real experiment you are likely to find that approximately 40% of the genes are
not expressed in the tissue that you are studying. In that case you have corrected for
something which should have been excluded from the analysis. There is of course an
issue in determining which genes are not differentially expressed is very difficult but the
gains from an approximate solution are likely to be quite large.

With 3 replicates we don’t expect to have much power. Should we even use t-statistics
over the more simple fold change estimates? Let’s see which one does better at ranking
the sixteen truly differentially expressed genes. Ideally, one would like the sixteen genes
to have ranks 1 through 16. It seems like the simple M-value or fold change measure
was more successful at identifying the sixteen known genes.

> m.ranks <- rank(-abs(scores[, 2]))

> names(m.ranks) <- rownames(scores)

> t.ranks <- rank(-abs(scores[, 3]))

> names(t.ranks) <- rownames(scores)

> cbind(m.ranks, t.ranks)[genenames, ]

m.ranks t.ranks

37777_at 67 20

684_at 1 1

1597_at 2068 692

38734_at 11 22

39058_at 17 27

36311_at 9 60

36889_at 12 145

1024_at 8 205

36202_at 7 39

36085_at 5 26

40322_at 13 53
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407_at 37 9

1091_at 14 24

1708_at 21 13

33818_at 6 5

546_at 4 21

We can easily repeat the whole procedure with the dataset comprising 12 replicates,
by simply using data(eset12) instead of data(eset3).
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