
Lab 5: Cluster Analysis Using R and Bioconductor

June 4, 2003

Introduction

In this lab we introduce you to various notions of distance and to some of the clustering
algorithms that are available in R. The lab comes in two parts, in the first we consider
different distance measures while in the second part we consider the clustering meth-
ods. It is worth mentioning that all clustering and machine learning methods rely on
some measure of distance. Almost all implementations have some measure that they use
as a default (this is usually Euclidean). As a user of this software you need to decide
what distance measures are of interest or are relevant for your situation and to subse-
quently ensure that the clustering methods use the distance metric that you believe is
appropriate.

The examples in this section will rely on the data reported in ?. The basic compar-
isons here are between B-cell derived ALL, T-cell derived ALL and AML. In some cases
we will just compare ALL to AML while in others comparisons between the three groups
will be considered.

> library(Biobase)

> library(annotate)

> library(golubEsets)

> library(genefilter)

> library(ellipse)

> library(lattice)

Loading required package: grid

> library(cluster)

> library(mva)

We transform the data in much the same way that ? did. The sequence of commands
needed are given below.
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> data(golubTrain)

> X <- exprs(golubTrain)

> X[X < 100] <- 100

> X[X > 16000] <- 16000

> mmfilt <- function(r = 5, d = 500, na.rm = TRUE) {

+ function(x) {

+ minval <- min(x, na.rm = na.rm)

+ maxval <- max(x, na.rm = na.rm)

+ (maxval/minval > r) && (maxval - minval > d)

+ }

+ }

> mmfun <- mmfilt()

> ffun <- filterfun(mmfun)

> sub <- genefilter(X, ffun)

> sum(sub)

[1] 3051

> X <- X[sub, ]

> X <- log2(X)

> golubTrainSub <- golubTrain[sub, ]

> golubTrainSub@exprs <- X

> Y <- golubTrainSub$ALL.AML

> Y <- paste(golubTrain$ALL.AML, golubTrain$T.B.cell)

> Y <- sub("NA", "", Y)

Now that the data are set up, we are ready to compute distances between tumor
samples and apply clustering procedures to these samples.

1 Distances

We first compute the correlation distance between the 38 tumor samples from the train-
ing set, using all 3,051 genes retained after the above filtering procedure.

> r <- cor(X)

> dimnames(r) <- list(as.vector(Y), as.vector(Y))

> d <- 1 - r

We rely on the plotcorr function from the ellipse package and the levelplot func-
tion from lattice for displaying this 38 ×38 distance matrix.

> plotcorr(r, main = "Leukemia data: Correlation matrix for 38 mRNA samples\n All 3,051 genes")
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> plotcorr(r, numbers = TRUE, main = "Leukemia data: Correlation matrix for 38 mRNA samples\n All 3,051 genes")

3
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> levelplot(r, col.region = heat.colors(50), main = "Leukemia data: Correlation matrix for 38 mRNA samples\n All 3,051 genes")

We can see in this plots that there is not a strong grouping of the ALL and AML
samples. We now consider selecting genes that are good differentiators between the two
groups. We use a t-test filter and require that the p-value be below 0.01 for selection
(no adjustment has been made).

> gtt <- ttest(golubTrainSub$ALL, p = 0.01)

> gf1 <- filterfun(gtt)

> whT <- genefilter(golubTrainSub, gf1)

> gTrT <- golubTrainSub[whT, ]

Now we can repeat the above computations and plots using the data in gTrT. There
were 609 genes selected using the t-test criterion above.

> rS <- cor(exprs(gTrT))

> dimnames(rS) <- list(gTrT$ALL, gTrT$ALL)

> dS <- 1 - rS

> plotcorr(r, main = "Leukemia data: Correlation matrix for 38 mRNA samples\n 609 genes")
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2 Multidimensional Scaling

We now turn to multidimensional scaling (MDS) for representing the tumor sample
distance matrix. MDS is a data reduction method that is appropriate for general distance
matrices. It is much like principal component analysis (PCA), but it is not the same –
except for Euclidean distances. Given an n×n distance matrix, MDS is concerned with
identifying n points in Euclidean space with a similar distance structure. The purpose is
to provide a lower dimensional representation of the distances which can better convey
the information on the relationships between objects, such as the existence of clusters
or one-dimensional structure in the data (e.g., seriation). In most cases we would like
to find a two or three dimensional reduction that could easily be visualized.

> mds <- cmdscale(d, k = 2, eig = TRUE)

> plot(mds$points, type = "n", xlab = "", ylab = "", main = "MDS for ALL AML data, correlation matrix, G=3,051 genes, k=2")

> text(mds$points[, 1], mds$points[, 2], Y, col = as.integer(factor(Y)) +

+ 1, cex = 0.8)
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> mds3 <- cmdscale(d, k = 3, eig = TRUE)

> pairs(mds3$points, main = "MDS for ALL AML data, correlation matrix, G=3,051 genes, k=3",

+ pch = c("B", "T", "M")[as.integer(factor(Y))], col = as.integer(factor(Y)) +

+ 1)

var 1
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var 3

MDS for ALL AML data, correlation matrix, G=3,051 genes, k=3

> if (require(rgl) && interactive()) {

+ rgl.spheres(x = mds3$points[, 1], mds3$points[, 2], mds3$points[,

+ 3], col = as.integer(factor(Y)) + 1, radius = 0.01)

+ }

Loading required package: rgl

Note, if we are measuring distances between samples on the basis of G = 3, 051 probes
then we are essentially looking at points in 3,051 dimensional space. As with PCA, the
quality of the representation will depend on the magnitude of the first k eigenvalues. To
assess how many components there are, a scree plot similar to that used for principal
components can be created. This plot of the eigenvalues suggests that much of the
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information is contained in the first component. One might consider using either three
or four components as well.

> mdsScree <- cmdscale(d, k = 8, eig = TRUE)

> plot(mdsScree$eig, pch = 18, col = "blue")
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EDD and ROC

In this section we consider a couple of other tools for visualizing genomic data. The first
is edd which stands for expression density diagnostics. The idea behind edd is to look
for genes whose patterns of expression are quite different in two groups of interest.

To assess whether two genes have different patterns of expression edd transforms all
expression values to the range 0,1 and then performs density estimation on them. Thus
it is looking for differences in shape and ignores differences in scale or location. In some
situations location and scale are more important (however there are many different tools
that can be used in those situations).
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In this case we will use edd to compare those patients with AML to those with B-cell
derived ALL. We will rely on the merged data set so that we have a number of samples
from each group (38 ALLs and 25 AMLs).

Once we have subset the data to the appropriate cases we next perform some non-
specific filtering to remove any genes that show little variation across samples. This is
an important step when using edd . Since edd standardizes the genes (across samples)
to give approximately common centering and scaling non-informative genes will not be
distinguishable from informative ones. Therefore, we must explicitly remove the non-
informative ones before applying edd .

> gMs <- golubMerge[, (golubMerge$T.B != "T-cell" | is.na(golubMerge$T.B))]

> fF1 <- gapFilter(100, 200, 0.1)

> ff <- filterfun(fF1)

> whgMs <- genefilter(gMs, ff)

> sum(whgMs)

[1] 3082

> gMs <- gMs[whgMs, ]

> library(edd)

Loading required package: nnet

Loading required package: class

Loading required package: xtable

We next split the data into two expression sets, one with the AML and the other
with the B-cell ALL samples. For each set we use edd to classify samples into one of a
set of predetermined shapes.

We will use edd to perform the classification and will use the default values of most
of the parameters. That means that we will be using the multiCand for candidate
comparison and knn for classification.

When multicand is selected edd selects 100 samples from each of the eight candidate
densities. Each of sample is scaled to have median 0 and mad 1. These constitute the
reference samples and for each gene we will perform the same transformation and then
compare the resulting data to the reference samples. Any machine learning technique
can in principle be used to make this comparison. In this example we will use the default
classifier which is knn.

The density, across samples, for each gene is found and scaled to have median 0 and
mad 1 (as for the reference samples).

> gMsALL <- gMs[, gMs$ALL == "ALL"]

> gMsAML <- gMs[, gMs$ALL == "AML"]

> set.seed(1234)

> edd.ALL <- edd(gMsALL, method = "knn", k = 4, l = 2)

> sum(is.na(edd.ALL))
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[1] 29

> edd.AML <- edd(gMsAML, method = "knn", k = 4, l = 2)

> sum(is.na(edd.AML))

[1] 71

> table(edd.ALL, edd.AML)

edd.AML

edd.ALL .25N(0,1)+.75N(4,1) .75N(0,1)+.25N(4,1) B(2,8) B(8,2)

.25N(0,1)+.75N(4,1) 0 4 3 3

.75N(0,1)+.25N(4,1) 2 28 69 10

B(2,8) 3 88 243 40

B(8,2) 1 5 8 9

logN(0,1) 1 45 102 14

N(0,1) 4 27 94 34

t(3) 13 63 103 50

U(0,1) 0 6 4 2

X^2(1) 1 42 48 5

edd.AML

edd.ALL logN(0,1) N(0,1) t(3) U(0,1) X^2(1)

.25N(0,1)+.75N(4,1) 3 5 10 0 1

.75N(0,1)+.25N(4,1) 20 40 40 17 15

B(2,8) 66 167 150 58 46

B(8,2) 3 20 11 4 1

logN(0,1) 79 60 70 15 58

N(0,1) 20 118 74 30 17

t(3) 60 116 153 38 28

U(0,1) 3 9 5 3 0

X^2(1) 68 25 29 11 45

For 29 of the ALL patients no classification was made. So properly they should be
classified as doubt. For the AML group 71 were classified as doubt. We can see from the
resulting table that there are a number of genes for which the ALL classification is a
mixture (mix1) while the AML classification is as a Normal random variable. To further
explore these will need to make use of some plots.

> diff1 <- edd.AML == "N(0,1)" & edd.ALL == ".75N(0,1)+.25N(4,1)"

> table(diff1)

diff1

FALSE TRUE

3021 40

9



> diff1[is.na(diff1)] <- FALSE

> AMLexprs <- exprs(gMsAML)[diff1, ]

> ALLexprs <- exprs(gMsALL)[diff1, ]

Now we have the two sets of expression data and we can see what the differences are.

> tAML <- fq.matrows(t(apply(AMLexprs, 1, centerScale)))

> tALL <- fq.matrows(t(apply(ALLexprs, 1, centerScale)))

> par(mfrow = c(2, 2))

> hist(AMLexprs[1, ])

> hist(ALLexprs[1, ])

> hist(AMLexprs[2, ])

> hist(ALLexprs[2, ])

> par(mfrow = c(1, 1))

ROC

Receiver operator curves are a tool that can be used to assess the classificaton capabilities
of a covariate. In situations where there are two classes (for example, AML versus ALL)
then one can consider splitting the data into two groups depending on the value of the
covariate. The relative proportions of AML and ALL in the two resulting groups can be
used to assess the capability of that covariate for splitting the data.

Hierarchical Clustering

We can use the hclust function in the mva package for agglomerative hierarchical clus-
tering. We consider the following agglomeration methods, i.e., methods for computing
between cluster distances:

Single linkage The distance between two clusters is the minimum distance between
any two objects, one from each cluster.

Average linkage The distance between two clusters is the average of all pairwise dis-
tances between the members of both clusters.

Complete linkage The distance between two clusters is the maximum distance be-
tween two objects, one from each cluster.

The nested sequence of clusters resulting from hierarchical clustering methods can be
represented graphically using a dendrogram. A dendrogram is a binary tree diagram in
which the terminal nodes, or leaves, represent individual observations and in which the
height of the nodes reflects the dissimilarity between the two clusters that are joined.

10



While dendrograms are quite appealing because of their apparent ease of interpretation,
they can be misleading.

First, the dendrogram corresponding to a given hierarchical clustering is not unique,
since for each merge one needs to specify which subtree should go on the left and which
on the right. For n observations, there are n − 1 merges and hence 2(n−1) possible
orderings of the terminal nodes. Therefore, 2(n−1) different dendrograms are consistent
with any given sequence of hierarchical clustering operations. The ordering is of practical
importance because it will result in different genes being placed next to each other in
the heat-maps and possibly different interpretations of the same data. A number of
heuristics have been suggested for ordering the terminal nodes in a dendrogram. The
default in the R function hclust from the cluster package is to order the subtrees so
that the tighter cluster is on the left (i.e., the most recent merge of the left subtree is at
a lower value than the last merge of the right subtree).

A second, and perhaps less recognized shortcoming of dendrograms, is that they
impose structure on that data, instead of revealing structure in these data. Indeed, den-
drograms are often viewed as graphical summaries of the data, rather than of the results
of the clustering algorithm. Such a representation will be valid only to the extent that
the pairwise dissimilarities possess the hierarchical structure imposed by the clustering
algorithm. Note that in particular, the same matrix of pairwise distances between obser-
vations will be represented by a different dendrogram depending on the distance function
that is used to compute between-cluster distances (e.g., complete or average linkage).
The cophenetic correlation coefficient can be used to measure how well the hierarchical
structure from the dendrogram represents the actual distances. This measure is defined
as the correlation between the n(n − 1)/2 pairwise dissimilarities between observations
and their cophenetic dissimilarities from the dendrogram, i.e., the between cluster dis-
similarities at which two observations are first joined together in the same cluster.

Next, we apply three agglomerative hierarchical clustering methods to cluster tumor
samples. For each methods, we plot a dendrogram, compute the corresponding cophe-
netic correlation, and compare the three clusters obtained from cutting the tree into
three branches to the actual tumor labels (ALL B-cell, ALL T-cell, and AML).

> hc1 <- hclust(as.dist(d), method = "average")

> coph1 <- cor(cophenetic(hc1), as.dist(d))

> plot(hc1, main = paste("Dendrogram for ALL AML data: Coph = ",

+ round(coph1, 2)), sub = "Average linkage, correlation matrix, G=3,051 genes")

> cthc1 <- cutree(hc1, 3)

> table(Y, cthc1)

cthc1

Y 1 2 3

ALL B-cell 16 2 1

11



ALL T-cell 8 0 0

AML 0 11 0
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> hc2 <- hclust(as.dist(d), method = "single")

> coph2 <- cor(cophenetic(hc2), as.dist(d))

> plot(hc2, main = paste("Dendrogram for ALL AML data: Coph = ",

+ round(coph2, 2)), sub = "Single linkage, correlation matrix, G= 3,051 genes")

> cthc2 <- cutree(hc2, 3)

> table(Y, cthc2)

cthc2

Y 1 2 3

ALL B-cell 17 1 1

ALL T-cell 8 0 0

AML 11 0 0
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> hc3 <- hclust(as.dist(d), method = "complete")

> coph3 <- cor(cophenetic(hc3), as.dist(d))

> plot(hc3, main = paste("Dendrogram for ALL AML data: Coph = ",

+ round(coph3, 2)), sub = "Complete linkage, correlation matrix, G= 3,051 genes")

> cthc3 <- cutree(hc3, 3)

> table(Y, cthc3)

cthc3

Y 1 2 3

ALL B-cell 18 1 0

ALL T-cell 8 0 0

AML 5 0 6
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Divisive hierarchical clustering is available using diana from the cluster package.

> di1 <- diana(as.dist(d))

> cophdi <- cor(cophenetic(di1), as.dist(d))

> plot(di1, which.plots = 2, main = paste("Dendrogram for ALL AML data: Coph = ",

+ round(cophdi, 2)), sub = "Divisive algorithm, correlation matrix, G= 3,051 genes")

> ct.di <- cutree(di1, 3)

> table(Y, ct.di)

ct.di

Y 1 2 3

ALL B-cell 16 2 1

ALL T-cell 1 7 0

AML 0 11 0
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3 Partitioning Methods

Here we apply the partitioning around medoids (PAM) method to cluster tumor mRNA
samples.

> set.seed(12345)

> pm3 <- pam(as.dist(d), k = 3, diss = TRUE)

> table(Y, pm3$clustering)

Y 1 2 3

ALL B-cell 16 3 0

ALL T-cell 0 1 7

AML 0 11 0

> clusplot(d, pm3$clustering, diss = TRUE, labels = 3, col.p = 1,

+ col.txt = as.integer(factor(Y)) + 1, main = "Bivariate cluster plot for ALL AML data\n Correlation matrix, K=3, G=3,051 genes")
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These two components explain 35.9 % of the point variability.
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> plot(pm3, which.plots = 2, main = "Silhouette plot for ALL-AML Data")

One of the more difficult questions that arises when clustering data is the assessment
of how many clusters there are in the data. We now consider using PAM with four
clusters.

> set.seed(12345)

> pm4 <- pam(as.dist(d), k = 4, diss = TRUE)

> clusplot(d, pm4$clustering, diss = TRUE, labels = 3, col.p = 1,

+ col.txt = as.integer(factor(Y)) + 1, main = "Bivariate cluster plot for ALL AML data\n Correlation matrix, K=4, G=3,051 genes")
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