
graph, RBGL, Rgraphviz
graph basic class definitions and
functionality

RBGL interface to graph algorithms (e.g.
shortest path, connectivity)

Rgraphviz rendering functionality
Different layout algorithms.
Node plotting, line type, color etc. can be
controlled by the user.

Creating our first graph
library(graph); library(Rgraphviz)

edges <- list(a=list(edges=2:3),
b=list(edges=2:3),
c=list(edges=c(2,4)),
d=list(edges=1))

g <- new("graphNEL", nodes=letters[1:4], edgeL=edges,
edgemode="directed")

plot(g)

Querying nodes, edges, degree
> nodes(g)
[1] "a" "b" "c" "d"

> edges(g)
$a
[1] "b" "c"
$b
[1] "b" "c"
$c
[1] "b" "d"
$d
[1] "a"

> degree(g)
$inDegree
a b c d
1 3 2 1
$outDegree
a b c d
2 2 2 1

Adjacent and accessible nodes
> adj(g, c("b", "c"))
$b
[1] "b" "c"
$c
[1] "b" "d"

> acc(g, c("b", "c"))
$b
a c d
3 1 2

$c
a b d
2 1 1

Undirected graphs, subgraphs, boundary graph

> ug <- ugraph(g)

> plot(ug)

> sg <- subGraph(c("a", "b",

"c", "f"), ug)

> plot(sg)

> boundary(sg, ug)
> $a
>[1] "d"
> $b
> character(0)
> $c
>[1] "d"
> $f
>[1] "e" "g"

Weighted graphs
> edges <- list(a=list(edges=2:3, weights=1:2),
+ b=list(edges=2:3, weights=c(0.5, 1)),
+ c=list(edges=c(2,4), weights=c(2:1)),
+ d=list(edges=1, weights=3))

> g <- new("graphNEL", nodes=letters[1:4],
edgeL=edges, edgemode="directed")

> edgeWeights(g)
$a
2 3
1 2
$b

2 3
0.5 1.0
$c
2 4
2 1

$d
1
3

Graph manipulation
> g1 <- addNode("e", g)

> g2 <- removeNode("d", g)

> ## addEdge(from, to, graph, weights)

> g3 <- addEdge("e", "a", g1, pi/2)

> ## removeEdge(from, to, graph)

> g4 <- removeEdge("e", "a", g3)

> identical(g4, g1)

[1] TRUE

Graph algebra

set.seed(4713)
V <- letters[1:4]
g1 <- randomGraph(V,

1, .55)
g2 <- randomGraph(V,

1, .55)

Graph algebra

set.seed(4713)
V <- letters[1:4]
g1 <- randomGraph(V,

1, .55)
g2 <- randomGraph(V,

1, .55)

union and
intersection are

defined for graphs
with common

node sets

Random graphs

Random edge graph: randomEGraph(V, p, edges)
V: nodes
either p: probability per edge
or edges: number of edges

Random graph with latent factor: randomGraph(V, M, p, weights=TRUE)
V: nodes
M: latent factor
p: probability
For each node, generate a logical vector of length length(M), with
P(TRUE)=p. Edges are between nodes that share >= 1 elements. Weights
can be generated according to number of shared elements.

Random graph with predefined degree distribution:
randomNodeGraph(nodeDegree)

nodeDegree: named integer vector
sum(nodeDegree)%%2==0

Graph representations

node-edge list: graphNEL
list of nodes
list of out-edges for each node

from-to matrix

adjacency matrix
adjacency matrix (sparse) graphAM (to come)

node list + edge list: pNode, pEdge (Rgraphviz)
list of nodes
list of edges (node pairs, possibly ordered)

Ragraph: representation of a laid out graph

Graph representations: from-to-matrix

> ft
[,1] [,2]

[1,] 1 2
[2,] 2 3
[3,] 3 1
[4,] 4 4

> ftM2adjM(ft)
1 2 3 4

1 0 1 0 0
2 0 0 1 0
3 1 0 0 0
4 0 0 0 1

RBGL: interface to the ‘Boost Graph Library’
> library(RBGL)
> data(FileDep)

> ts <- tsort(FileDep)
> nodes(FileDep)[ts+1]
[1] “zow_h" "boz_h"
[3] "zig_cpp" "zig_o”
[5] "dax_h“ "yow_h"
[7] "zag_cpp" "zag_o"
[9] "bar_cpp" "bar_o"
[11] "foo_cpp" "foo_o"
[13] "libfoobar_a“

"libzigzag_a"
[15] "killerapp"
>

topological sort

linear ordering of the edges such that:

if edge (u,v) appears in the graph, then u comes
before v in the ordering.

The graph must be a directed acyclic graph
(DAG).

The implementation consists mainly of a call to
depth-first search

minimal spanning tree

km <-
fromGXL(file(system.file("GXL/kmstEx
.gxl", package = "graph")))

ms <- mstree.kruskal(km)

e <- buildEdgeList(km)
n <- buildNodeList(km)

for(i in 1:ncol(ms$edgeList))

e[[paste(ms$nodes[ms$edgeList[,i]],
collapse="~")]]@attrs$color

<- "red"

z <- agopen(nodes=n, edges=e,
edgeMode="directed", name="")

plot(z)

breadth first search

> br <- bfs(dd, "r")

> nodes(dd)[br]

[1] "r" "s" "v" "w" "t" "x" "u" "y"

>

> bs <- bfs(dd, "s")

> nodes(dd)[bs]

[1] "s" "w" "r" "t" "x" "v" "u" "y"

depth first search

> df <- dfs(dd2, "u", FALSE)

> nodes(dd)[df$discovered]

[1] "u" "v" "y" "x" "w" "z"

> nodes(dd)[df$finish]

[1] "x" "y" "v" "u" "z" "w"

shortest path
> sp.between(g, "E", "C")

$"E:C"

$"E:C"$path
[1] "E" "A" "C"

$"E:C"$length
[1] 2

$"E:C"$pweights
E->A A->C

1 1

> dijkstra.sp(g)
$distances
A B C D E
0 6 1 4 5
$penult
A B C D E
1 5 1 3 4
$start
A
1

1

connected components
> g1 <- removeEdge('A', 'C', g)
> g1 <- removeEdge('D', 'E', g1)
> g1 <- removeEdge('B', 'E', g1)
> g1 <- removeEdge('E', 'B', g1)

> connectedComp(g)

$"1"
[1] "A" "B" "C" "D" "E"

> connectedComp(g1)

$"1"
[1] "A" "E"
$"2"
[1] "B" "C" "D"

strongly connected components
applies only to directed graphs

> strongComp(km)
$"1"
[1] "D"
$"2"
[1] "A" "B" "C" "E"
$"3"
[1] "F"
$"4"
[1] "G" "H"

> connectedComp(ugraph(km))
$"1"
[1] "A" "B" "C" "D" "E"
$"2"
[1] "F"
$"3"
[1] "G" "H"

connectivity
Let g have single connected
component.
Edge connectivity of g: minimum
number of edges in g that can be cut to
produce a graph with two components.
Minimum disconnecting set: the set of
edges in this cut.

> edgeConnectivity(g)
$connectivity
[1] 2

$minDisconSet
$minDisconSet[[1]]
[1] "D" "E"

$minDisconSet[[2]]
[1] "D" "H"

Rgraphviz: the different layout engines

dot: directed graphs. Works best on DAGs
and other graphs that can be drawn as
hierarchies.

neato: undirected graphs using ’spring’ models

twopi: radial layout. One node (‘root’) chosen as
the center. Remaining nodes on a sequence of
concentric circles about the origin, with radial
distance proportional to graph distance. Root
can be specified or chosen heuristically.

Rgraphviz: the different layout engines

dot neato twopi

domain combination graph

GXL: graph exchange language

<gxl>
<graph edgemode="directed" id="G">
<node id="A"/>
<node id="B"/>
<node id="C"/>
…
<edge id="e1" from="A" to="C">
<attr name="weights">
<int>1</int>
</attr>
</edge>
<edge id="e2" from="B" to="D">
<attr name="weights">
<int>1</int>
</attr>
</edge>
…

</graph>
</gxl>

from graph/GXL/kmstEx.gxl

GXL
(www.gupro.de/GXL)

is "an XML
sublanguage

designed to be a
standard exchange
format for graphs".
The graph package

provides tools for
im- and exporting

graphs as GXL

