
Lab: Introduction to Bioconductor’s ExpressionSet
Class

Seth Falcon, Martin Morgan, and Robert Gentleman

6 October, 2006

1 Introduction

In this lab you will learn how to create and manipulate ExpressionSet objects. In the
processes you will have an opportunity to practice some basic R skills.

2 Loading Packages

The definition of the ExpressionSet class along with many methods (OOP-speak for func-
tions) for manipulating ExpressionSet objects are defined in the Biobase package. In general,
you need to load class and method definitions before you use them. When using Bioconduc-
tor, this means loading R packages using library or require.

> library("Biobase")

Exercise 1
What happens when you try to load a package that is not installed?

3 Building an ExpressionSet From Scratch

The data from many high-throughput genomic experiments, such as microarray experiments,
can be summarized by a matrix of expression. The matrix has F rows and S columns, where
F is the number of features on the chip and S is the number of samples. In addition, one will
have a data table that provides information on the samples (e.g., sex, age, and treatment
status). The information describing the samples, or phenotypes, can be represented as an S
by V table, where V is the number of covariates. In R, we use a data.frame to hold this
“phenoData”. Note that the columns of the expression matrix must align with the rows of
the phenoData table. The ExpressionSet class provides a container for the expression matrix
and phenoData and keep the two properly aligned.
In the exercises below, you will learn how to create a new ExpressionSet instance given a
matrix of expression values and a data.frame containing the phenoData. Other labs will
cover the creation of the expression matrix from raw CEL files for microarray data.

1

3.1 Loading the Expression Matrix

3.1.1 R Binary Files

You can save objects in your R session to a file using the save function. By default, this will
create a file in R’s internal binary format. The same binary file produced by a call to save

can be used on Linux, OS X, and Windows.
You can load the objects saved in an rda file using the load function.

3.1.2 Loading ALLmat

Below, we will load a large matrix of expression values stored in the file ALLmat.rda. The
example assumes that the file is in the current working directory. You can change the working
directory using setwd.

> getwd()

[1] "/Users/seth/proj/COURSES/bioc_R_intro/Bioc_intro"

> ls()

character(0)

> load("ALLmat.rda")

> ls()

[1] "ALLmat"

The ls function lists the R objects in your current working environment. You should see a
new object named ALLmat appear after the call to load.

Exercise 2
Open and read the help page for load.

Exercise 3
Determine the class and dimension of the matrix.

3.2 Loading the Phenotype Data

Covariates describing the samples in this experiment have been saved to a whitespace-
delimited text file called ALL-sample-info.txt. Delimited text files are common and can
be produced from Microsoft Excel by saving as a “csv” file (this stands for comma separated
values, but the separator does not have to be a comma).
R’s read.table function is a powerful tool for reading delimited text files. Below, you will
use it to read in the phenoData.

2

> samples <- read.table("ALL-sample-info.txt", header = TRUE,

+ check.names = FALSE)

Exercise 4
What class does read.table return?

Exercise 5
Determine the column names of samples. Hint: apropos("name").

Exercise 6
Use sapply to determine the classes of each column of samples. Hint: read the help page
for sapply.

Exercise 7
Examine the sex and age of the 15th and 30th samples. Do the same for the sample with
cod matching 11005.

To make the phenoData more self-documenting, we have a file ALL-varMeta.txt that gives
a description for each column of samples. You can use read.table to read this file into an
R object.

> varInfo <- read.table("ALL-varMeta.txt", header = TRUE,

+ colClasses = "character")

> varInfo[c("sex", "cod", "mol.biol"), , drop = FALSE]

labelDescription

sex Gender of the patient

cod Patient ID

mol.biol molecular biology

Bioconductor’s Biobase package provides a class called AnnotatedDataFrame that allows you
to store the column descriptions with the data. Create an AnnotatedDataFrame instance for
our phenoData by following the example below.

> pd <- new("AnnotatedDataFrame", data = samples, varMetadata = varInfo)

3.3 Creating an ExpressionSet , finally

Now that you have a matrix of expression values (ALLmat) and an AnnotatedDataFrame
containing the phenotype information (pd), you are ready to put the pieces together and
create an ExpressionSet .

> ALLSet <- new("ExpressionSet", exprs = ALLmat, phenoData = pd,

+ annotation = "hgu95av2")

The annotation argument is intended to hold the name of the R package that provides
annotation data for the chip used in the experiment. In this case, the appropriate annotation
package is hgu95av2.

3

3.4 ExpressionSet Basics

Now that you have an ExpressionSet instance, let’s explore some of the basic operations.
You can get an overview of the structure and available methods for ExpressionSet objects
by reading the help page:

> help("ExpressionSet-class")

> "?"(class, ExpressionSet)

When you print an ExpressionSet object, a brief summary of the contents of the object is
displayed. All of the data contained by the ExpressionSet is not shown. This would not be
useful as it would fill your screen with data.

> ALLSet

Instance of ExpressionSet

assayData

Storage mode: lockedEnvironment

featureNames: 1000_at, 1001_at, 1002_f_at, ..., AFFX-YEL021w/URA3_at, AFFX-YEL024w/RIP1_at (12625 total)

Dimensions:

exprs

Rows 12625

Samples 128

phenoData

sampleNames: 01005, 01010, 03002, ..., 83001, LAL4 (128 total)

varLabels:

cod: Patient ID

diagnosis: Date of diagnosis

sex: Gender of the patient

age: Age of the patient at entry

BT: does the patient have B-cell or T-cell ALL

...: ...

relapse: Relapse? Derived from f.u

transplant: did the patient receive a bone marrow transplant? Derived from f.u

f.u: follow up data available

date last seen: date patient was last seen

(21 total)

Experiment data

Experimenter name:

Laboratory:

Contact information:

4

Title:

URL:

PMIDs:

No abstract available.

Annotation [1] "hgu95av2"

3.4.1 Accessing Data Elements

A number of accessor functions are available to extract data from an ExpressionSet instance.
You can access the columns of the phenotype data (an AnnotatedDataFrame instance) using
$:

> ALLSet$sex[1:5] == "F"

[1] FALSE FALSE TRUE FALSE FALSE

> ALLSet$"t(9;22)"[1:5]

[1] TRUE FALSE NA FALSE FALSE

You can retrieve the names of the features using featureNames. For many microarray
datasets, the feature names are the probeset identifiers.

> featureNames(ALLSet)[1:5]

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

The unique identifiers of the samples in the data set are available via the sampleNames

method. The varLabels method lists the column names of the phenotype data:

> sampleNames(ALLSet)[1:5]

[1] "01005" "01010" "03002" "04006" "04007"

> varLabels(ALLSet)

[1] "cod" "diagnosis" "sex"

[4] "age" "BT" "remission"

[7] "CR" "date.cr" "t(4;11)"

[10] "t(9;22)" "cyto.normal" "citog"

[13] "mol.biol" "fusion protein" "mdr"

[16] "kinet" "ccr" "relapse"

[19] "transplant" "f.u" "date last seen"

You can extract the expression matrix and the AnnotatedDataFrame of sample information
using exprs and phenoData, respectively:

> mat <- exprs(ALLSet)

> adf <- phenoData(ALLSet)

5

3.4.2 Subsetting

Probably the most useful operation to perform on ExpressionSet objects is subsetting. Sub-
setting an ExpressionSet is very similar to subsetting the expression matrix that is contained
within the ExpressionSet , the first argument subsets the features and the second argument
subsets the samples. Here are some examples:
A new ExpressionSet consisting of the 5 features and the first 3 samples:

> vv <- ALLSet[1:5, 1:3]

> dim(vv)

Rows Samples

5 3

> featureNames(vv)

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

> sampleNames(vv)

[1] "01005" "01010" "03002"

A subset consisting of only the male samples:

> males <- ALLSet[, ALLSet$sex == "M"]

Samples that have B-cell type ALL:

> anyB <- grep("^B", ALLSet$BT)

> bcell <- ALLSet[, anyB]

4 What was used to create this document

The version number of R and the packages and their versions that were used to generate this
document are listed below.

� Version 2.3.1 Patched (2006-06-08 r38315), powerpc-apple-darwin8.6.0

� Base packages: base, datasets, grDevices, graphics, methods, stats, tools, utils

� Other packages: Biobase 1.10.0

6

	Introduction
	Loading Packages
	Building an ExpressionSet From Scratch
	Loading the Expression Matrix
	R Binary Files
	Loading ALLmat

	Loading the Phenotype Data
	Creating an ExpressionSet, finally
	ExpressionSet Basics
	Accessing Data Elements
	Subsetting

	What was used to create this document

