
Lab: Writing packages in R

Seth Falcon Robert Gentleman

January 18, 2006

1 Overview

In this lab you will build an R package called DNAhelperUSER from scratch
(where USER is your login for your computer). The goal is to produce a working
package, complete with proper documentation, that passes the R CMD check
utility without any errors or warnings being reported.

If you have never built an R package from scratch before, you should be
happy if you complete Section 5. Section 6 is for experienced developers inter-
ested in exploring how namespaces work with R packages. If you are comfortable
building R packages, you should aim to move quickly so you have some time to
work through Section 6.

2 A function for the package

To start with, the DNAhelperUSER package will contain a single function, dna-
Complement that returns the complement of a given DNA sequence. For exam-
ple, the call dnaComplement("ACGT") would return "TGCA".

To implement dnaComplement, observe the following“vectorization”of chartr.

> dnaSeq <- "AAGGTTCC"

> comSeq <- "TTCCAAGG"

> ans <- chartr("ATGC", "TACG", dnaSeq)

> ans

[1] "TTCCAAGG"

> comSeq == ans

[1] TRUE

Exercise 1
Using the chartr example, write a dnaComplement function.

1



3 Package skeleton

R provides a function package.skeleton that according to the man page

... automates some of the setup for a new source package. It creates
directories, saves functions and data to appropriate places, and cre-
ates skeleton help files and README files describing further steps in
packaging.

Here we call package.skeleton to create the initial structure and templates
for the DNAhelperUSER package.

> user <- Sys.info()["user"]

> pkgName <- paste("DNAhelper", user, sep = "")

> if (interactive()) {

+ package.skeleton(name = pkgName, list = "dnaComplement")

+ }

Exercise 2
Explore the directory created by package.skeleton. Read the README files and
then delete them.

4 Manual pages: Editing Rd files

Inside the DNAhelperUSER/man subdirectory, you should find a template for the
manual page documenting the dnaComplement function with the name dnaCom-
plement.Rd. This file is in Rd (R documentation) format which is a LATEX like
markup that is documented in the Writing R Extensions manual.

Exercise 3
Use a text editor to complete the manual page for the dnaComplement function.
Add an example that demonstrates the use of the function.

5 Building DNAhelperUSER

At a shell command prompt, build the DNAhelperUSER package like this:

R CMD build DNAhelperUSER

If you see any warning or error messages, try to correct them. Ask for help if
you get stuck or are having trouble interpreting the warning and error messages.

Next, try installing the package:

R CMD INSTALL DNAhelperUSER

2



Again, if you see any warning or error messages, you will need to address
them before continuing.

Finally, run check on the package and fix any errors or warnings that are
reported:

R CMD check DNAhelperUSER_x.y.z.tar.gz

You can also run check on the package source directory:

R CMD check DNAhelperUSER/

Exercise 4
Cleanup the DNAhelperUSER package until it passes check without warnings
and without errors.

Exercise 5
Install the DNAhelperUSER package, load it and try out the dnaComplement

function. Try asking for help on the function and verify that your manual page
is available.

Exercise 6
The example sections of all Rd files in the man subdirectory are executed during
R CMD check. Modify the example in the manual page for dnaComplement by
adding a call to stop. Rerun the check process; the example should fail.

6 Demonstrating namespace issues

In this section we will explore package namespaces. To start with, let’s demon-
strate how easy it is to break packages without a NAMESPACE file defined.

Exercise 7
Load the DNAhelperUSER package and then try redefining the chartr function
like this:

chartr <- function(...) cat("This is my version of chartr\n")

Does the dnaComplement function still work?

Name collisions can be nasty. Adding a namespace to a package is one thing
that a developer can do to make it more difficult for users to mess things up.

Advantages of a namespace for a package:

1. Your package won’t be broken by ”helper” functions that your users define
in the global environment.

2. Your package won’t be bothered by functions in other packages with the
same name.

3



3. A namespace gives you the ability to clearly specify which functions are
part of the public interface and which are private. R CMD check won’t
bother you for documentation on non-exported functions, although it is
often still useful to give them some documentation.

There are some disadvantages:

1. You have to maintain the NAMESPACE file

2. It is less convenient to debug/develop packages with namespaces because
you have to run R CMD INSTALL to be sure everything gets updated in the
namespace properly. Although less convenient, you will be more certain
that the behavior is really in your package and not a result of things hiding
in your global environment.

Exercise 8
Add a NAMESPACE file to the package and verify that it protects against
redefinition of chartr.

4


	Overview
	A function for the package
	Package skeleton
	Manual pages: Editing Rd files
	Building DNAhelperUSER
	Demonstrating namespace issues

