Solutions for chapter R and Bioconductor Introduction

Exercise 1

a > apropos("plot")
[1] ".__C__recordedplot"
[2] ".__M__KEGGmnplot:annotate"
[3] ".__M__MAplot:affy"
[4] "..."
b > help.search("mann-whitney")
c > library("Biobase")
> openVignette("Biobase")

Exercise 2

sessionInfo prints version information about R and all loaded packages. This is helpful when posting on one of the R or Bioconductor mailing lists in order to provide detailed information about the software you are using.

```
> sessionInfo()
R version 2.7.0 Under development (unstable) (2007-10-16
    r43183)
i686-pc-linux-gnu
locale:
C
attached base packages:
[1] tools stats graphics grDevices datasets
[6] utils methods base
other attached packages:
    [1] geneplotter_1.17.3 lattice_0.17-2
    [3] annotate_1.17.3 xtable_1.5-2
    [5] AnnotationDbi_1.1.6 RSQLite_0.6-4
    [7] DBI_0.2-4 hgu95av2cdf_2.0.0
    [9] hgu95av2probe_2.0.0 matchprobes_1.11.0
```

```
[11] CLL_1.2.4 affy_1.17.3
[13] preprocessCore_1.1.3 affyio_1.7.6
[15] RColorBrewer_1.0-2 GO_2.0.1
[17] class_7.2-38 hgu95av2_2.0.1
[19] BiocCaseStudies_1.1.1 Biobase_1.17.5
[21] weaver_1.5.0
codetools_0.1-3
[23] digest_0.3.1
loaded via a namespace (and not attached):
[1] KernSmooth_2.22-21 grid_2.7.0
```


Exercise 3

$\mathrm{a}>\mathrm{x}=\mathrm{c}(0.1,1.1,2.5,10)$
$>y=1: 100$
$>z=y<10$
> pets = c(Rex="dog", Garfield="cat", Tweety="bird")
b Arithmetic expressions in R are vectorized. The operations are performed element by element. If two vectors of unequal length are used in the same expression, R recycles the shorter of the two vectors.

```
> 2 * x + c(1,2)
```

[1] $1.2 \quad 4.2 \quad 6.0 \quad 22.0$
c Index vectors can be of type logical, integer and character (for the special case of named vectors).

```
> ##logical
```

> $y[z]$
[1] 1223456789
> \#\# integer
> y[1:4]
[1] 1234
> y[-(1:95)]
[1] $96 \quad 97 \quad 98 \quad 99100$
> \#\# character
> pets["Garfield"]
Garfield
"cat"

Matrices and arrays can be indexed similar to vectors. Each dimension is separated by a comma in the square brackets.

```
>m = matrix(1:12, ncol=4)
> m[1,3]
```

[1] 7
d List items are selected using the $\$$ operator or the [[operator. The latter accepts all three types of index vectors, the former always interprets its right hand argument literally as a name. Note that [returns a list even if only one element is selected. You can use the [[operator to get to the content of a single list element. List are created using the list function.
> l = list(name="Paul", sex=factor("male"), age=35)
> l\$name
[1] "Paul"
> 1 [[3]]
[1] 35
e A matrix is a rectangular table of elements of equal type. In a data.frame, each column may have different type. R matrices and arrays are implemented as vectors with a dimension attribute, data frames as a list of vectors that are all enforced to have the same length, but may be of different type.

Exercise 4

```
> ppc = function(x) paste("^", x, sep="")
```


Exercise 5

```
> myFindMap = function(mapEnv, which) {
    myg = ppc(which)
    a1 = eapply(mapEnv, function(x)
        grep(myg, x, value=TRUE))
    unlist(a1)
}
```

Exercise 6
a > theEnv = new.env(hash=TRUE)
> theEnv\$locations = myFindMap(hgu95av2MAP, 18)
b > theEnv\$strip = function(x) gsub("18", "", x)
c > myExtract $=$ function(env) env\$strip(env\$locations)
> myExtract(theEnv) [1:5]
420_at 36469_at 808_at 862_at 35817_at
"p11.2" "q12" "q21.2" "q21.3" "q23"

Exercise 7
a > class (pData)
[1] "data.frame"
b > names (pData)
[1] "gender" "type" "score"
c > sapply(pData, class)
gender type score
"factor" "factor" "numeric"
d > pData[c(15, 20), c("gender", "type")]
gender type
O Female Case
T Female Case
> pData[pData\$score > 0.8,]
gender type score
E Female Case 0.93
G Male Case 0.96
X Male Control 0.98
Y Female Case 0.94

Exercise 8

```
> plot(x=x, y=y, log="xy",
    xlab="gene expression sample #1",
    ylab="gene expression sample #3",
    main="scatterplot of expression intensities",
        pch=20)
> abline(a=0, b=1)
```


Figure 1. Scatter plot of expression intensities for two samples.

Exercise 9

```
> multiecdf(int ~ gc, data=subset(probedata, gc %in% gcUse),
    xlim=c(6, 11), col=colorfunction(12)[-(1:2)],
    lwd=2, main="", ylab="ECDF")
```


Figure 2. Scatter plot of expression intensities for two samples.

