

cDNA Microarray Analysis with BioConductor packages

Nolwenn Le Meur

Copyright 2007

Outline

- Data acquisition
- Pre-processing
 - Quality assessment
 - Pre-processing
 - background correction
 - normalization
 - summarization

Two-color Microarray

(adapted from Duggan et al., Nat. Gen., 1999)

Image Analysis

1. Location

2. Segmentation

3. Quantification

	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	C
1	Z69892.1	XM_054214.2	XM_041018.1	XM_030011.2	X63432	\$42658.1	NM_006471.1	NM_005159.1	NM_003090.1	NM_001825.1	NM_001101.2	NM_000258.1	M14603.1	J01415.1	BCC
2	Z69892.1	XM_054214.2	XM_040948.2	XM_029192.1	X63432	NM_032169.1	NM_006471.1	NM_005159.1	NM_002807.1	NM_001825.1	NM_001101.2	NM_000257.1	M11146.1	J01415.1	BCC
3	Z24725.1	XM_053038.1	XM_040948.2	XM_029192.1	X60819.1	NM_032169.1	NM_006471.1	NM_005159.1	NM_002807.1	NM_001825.1	NM_001100.2	2 NM_000257.1	L39210.1	J01415.1	BCE
4	Z24725.1	XM 053038.11	XM 039448.1	XM 028372.1	X60819.1	NM 021130.1	NM 006294.1	NM 005110.1	NM 002803.1	NM 001824.1	NM 001100.2	NM 000257.1	L39210.1	J01415.1	BCC
5	Z15030.1	XM 052916.1	XM 039448.1	XM 028372.1	X54145.1	NM 021130.1	NM 006294.1	NM 005110.1	NM 002803.1	NM 001824.1	NM 001100.2	NM 000257.1	L36033.1	J01415.1	BCC
6	Z15030.1	XM 052916.1	XM 038278.3	XM 018268.3	X54145.1	NM 016440.1	NM 006111.1	NM 005061.1	NM 002799.1	NM 001697.1	NM 001098.1	NM 000257.1	L36033.1	J01415.1	BCC
7	XM 058357.1	XM 052627.2	XM 038278.3	XM 016697.2	X16869.1	NM 016160.1	NM 006111.1	NM 005061.1	NM 002799.1	NM 001689.1	NM 001098.1	NM 000256.1	L32835.1	J01415.1	BCC
8	XM_058357.1	XM_052627.2	XM_038027.1	XM_016290.2	X16869.1	NM_014819.1	NM_006044.1	NM_005006.1	NM_002715.1	NM_001689.1	NM_001035.1	NM_000256.1	L32835.1	J01415.1	BCE
9	XM_058173.1	XM_052331.3	XM_038027.1	XM_016290.2	X16869.1	NM_014819.1	NM_006044.1	NM_005006.1	NM_002715.1	NM_001686.1	NM_001035.1	NM_000237.1	L07782.1	J01415.1	BCC
10	XM_058173.1	XM_052321.1	XM_037923.1	XM_016198.2	X16869.1	NM_014713.1	NM_006007.1	NM_004768.1	NM_002710.1	NM_001686.1	NM_001006.1	NM_000237.1	L07782.1	J01415.1	BCC
11	XM_057782.1	XM_051945.1	XM_037923.1	XM_016198.2	X16869.1	NM_014713.1	NM_006007.1	NM_004768.1	NM_002623.2	NM_001686.1	NM_001006.1	NM_000126.1	L05087.1	J01415.1	BCC
12	XM_057782.1	XM_051945.1	XM_037923.1	XM_008989.1	X16869.1	NM_014391.1	·NM_006003.1	NM_004548.1	NM_002623.2	NM_001681.1	NM_000992.1	NM_000126.1	L05087.1	J01415.1	BCC
13	XM_057346.1	XM_051865.3	XM_037923.1	XM_007127.2	X16869.1	NM_014391.1	NM_006003.1	NM_004548.1	NM_002612.1	NM_001681.1	NM_000992.1	NM_000065.1	L00016.1	J01415.1	BCE
14	XM_057346.1	XM_051865.3	XM_037797.2	XM_007127.2	X14891.1	NM_014391.1	NM_005917.1	NM_004415.1	NM_002612.1	NM_001681.1	NM_000986.1	NM_000065.1	K02043.1	J01415.1	BCC
15	XM_057063.1	XM_050614.1	XM_036858.1	XM_007031.4	X14891.1	NM_014391.1	NM_005917.1	NM_004415.1	NM_002521.1	NM_001628.1	NM_000986.1	NM_000019.1	K02043.1	J01415.1	BCE
16	XM_057063.1	XM_050614.1	XM_036858.1	XM_007031.4	U94					11628.1	NM_000972.1	NM_000019.1	K02043.1	D79994.1	BCC
17	XM_056761.1	XM_049679.1	XM_035796.1	XM_006238.4	U94					11613.1	NM_000972.1	NM_000018.1	K02043.1	D79994.1	BCC
18	XM_056761.1	XM_049679.1	XM_035796.1	XM_005848.2	U9/					11613.1	NM_000970.2	2 NM_000018.1	K02043.1	D50683.1	BCC
19	XM_055859.1	XM_049575.2	XM_034179.1	XM_005848.2	U94				>+ ~	11613.1	NM_000970.2	2 NM_000016.1	K02043.1	D50683.1	BCC
20	XM_055859.1	XM_049131.2	XM_034179.1	XM_005417.4	U9C				11/	11553.1	NM_000919.1	NM_000016.1	J03620.1	D30648.1	BCC
21	XM_055793.1	XM_049131.2	XM_034146.2	XM_005417.4	U9(M		11553.1	NM_000919.1	NC_001807.4	J03620.1	D28908.1	BCC
22	XM_055793.1	XM_046843.1	XM_034146.2	XM_004377.3	U81					11450.1	NM_000587.1	NC_001807.3	J03015.1	D28908.1	BCE
23	XM_055682.1	XM_046843.1	XM_034036.1	XM_003317.4	U81					1450.1 س.	NM_000587.1	NC_001807.3	J03015.1	D28908.1	BCC
24	XM_055682.1	XM_046056.2	XM_034036.1	XM_003317.4	U62136.2	NM_007361.1	NM_005530.1	NM_003319.1	NM_002300.1	NM_001450.1	NM_000543.1	NC_001807.3	J01415.1	D17409.1	BCC
25	XM_055602.1	XM_046056.2	XM_033374.1	XM_003317.4	U62136.2	NM_007361.1	NM_005530.1	NM_003319.1	NM_002300.1	NM_001450.1	NM_000543.1	M94859.1	J01415.1	D17409.1	BCC
26	XM_055602.1	XM_045954.1	XM_032396.1	XM_003317.4	U49020.1	NM_007159.1	NM_005368.1	NM_003319.1	NM_002300.1	NM_001450.1	NM_000366.1	M94859.1	J01415.1	D10040.1	BCC
27	XM_055545.1	XM_045954.1	XM_032396.1	XM_002862.4	U49020.1	NM_007159.1	NM_005368.1	NM_003319.1	NM_002156.1	NM_001450.1	NM_000366.1	M64247.1	J01415.1	D10040.1	BCE
28	XM_055545.1	XM_044022.1	XM_032004.1	XM_002862.4	U40490.1	NM_007107.1	NM_005368.1	NM_003319.1	NM_002156.1	NM_001402.1	NM_000366.1	M64247.1	J01415.1	D00943.1	BCC
29	XM_055358.1	XM_044022.1	XM_032004.1	XM_002659.3	U40490.1	NM_007107.1	NM_005368.1	NM_003319.1	NM_002136.1	NM_001402.1	NM_000366.1	M31776.1	J01415.1	D00943.1	BCE
30	XM_055358.1	XM_043669.1	XM_031823.1	XM_002659.3	S72481.1	NM_007079.1	NM_005368.1	NM_003197.2	NM_002136.1	NM_001402.1	NM_000366.1	M31776.1	J01415.1	D00943.1	BCC
31	XM_055266.1	XM_043669.1	XM_031823.1	XM_002601.3	S72481.1	NM_007079.1	NM_005162.2	NM_003130.1	NM_002107.1	NM_001402.1	NM_000294.1	M31776.1	J01415.1	BE858853	BCC
32	XM_055266.1	XM_043419.2	XM_031736.2	XM_002601.3	\$69022.1	NM_005876.1	NM_005162.2	NM_003130.1	NM_002107.1	NM_001402.1	NM_000294.1	M27024.1	J01415.1	BE858853	BCC
33	XM_055102.1	XM_041875.1	XM_031736.2	XM_002556.5	S69022.1	NM_006876.1	NM_005159.2	NM_003130.1	NM_002079.1	NM_001402.1	NM_000289.1	M27024.1	J01415.1	BC017495	BCC
34	XM_055102.1	XM_041869.2 +	XM_031661.1	XM_002556.5	\$69022.1	NM_006793.1	NM_005159.2	NM_003130.1	NM_002079.1	NM_001232.1	NM_000289.1	M26700.1	J01415.1	BC017495	BCC
35	XM_054849.1	XM_041869.2 +	XM_031661.1	X91647.1	S69022.1	NM_006793.1	NM_005159.2	NM_003130.1	NM_001969.1	NM_001232.1	NM_000289.1	M26700.1	J01415.1	BC017189	BCC
36	XM_054849.1	XM_041393.1	XM_030182.1	X91647.1	S69022.1	NM_006513.1	NM_005159.1	NM_003094.1	NM_001969.1	NM_001103.1	NM_000289.1	M26576.1	J01415.1	BC017189	BCC
37	XM_054461.1	XM_041393.1	XM_030182.1	X66699.1	\$69022.1	NM_006513.1	NM_005159.1	NM_003094.1	NM_001885.1	NM_001103.1	NM_000258.1	M26576.1	J01415.1	BC017189	BCC
38	XM_054461.1	XM_041018.1	XM_030011.2	X66699.1	S42658.1	NM_006471.1	NM_005159.1	NM_003090.1	NM_001885.1	NM_001103.1	NM_000258.1	M14603.1	J01415.1	BC017080	BCC
H +	► H\Feuil	I / Feul2 / Feu	iB /						4						E

Terminology

- **Target:** DNA hybridized to the array, mobile substrate.
- Probe: DNA spotted on the array (spot).
- print-tip-group : collection of spots printed using the same print-tip (or pin), aka. grid.

- **G**, **Gb**: Cy3 signal and background intensities
- **R**, **Rb**: Cy5 signal and background intensities

BioC Task View: 129 packages

🛛 🕶 🚽 😴 💿 🏠 💿 http://www.bioconductor.org/packages/bioc/1.8/TwoChannel.html

🕶 🜔 Go 🔀

- 8 ×

Subview of

Microarray

Packages in view

Package	Maintainer	Title
<u>arrayQuality</u>	A. Paquet	Assessing array quality on spotted arrays
bridge	Raphael Gottardo	Bayesian Robust Inference for Differential Gene Expression
genArise	IFC Development Team	Microarray Analysis tool
GEOquery	Sean Davis	Get data from NCBI Gene Expression Omnibus (GEO)
limma	Gordon Smyth	Linear Models for Microarray Data
<u>limmaGUI</u>	Keith Satterley	GUI for limma package
<u>maDB</u>	Johannes Rainer	Microarray database and utility functions for microarray data analysis.
makePlatformDesign	Benilton Carvalho	Platform Design Package
<u>marray</u>	Yee Hwa (Jean) Yang	Exploratory analysis for two-color spotted microarray data
mNorm	Tarca Laurentiu	Spatial and intensity based normalization of cDNA microarray data based on robust neural nets
nudge	N. Dean	Normal Uniform Differential Gene Expression detection
oligo	Benilton Carvalho	Oligonucleotide Arrays
OLIN	Matthias Futschik	Optimized local intensity-dependent normalisation of two-color microarrays
OLINgui	Matthias Futschik	Graphical user interface for OLIN
rama	Raphael Gottardo	Robust Analysis of MicroArrays
snapCGH	Mike Smith	Segmentation, normalisation and processing of aCGH data.
spotSegmentation	Chris Fraley	Microarray Spot Segmentation and Gridding for Blocks of Microarray Spots
vsn	Wolfgang Huber	Variance stabilization and calibration for microarray data

Import data...

- using limma package
- limmaUsersGuide()

```
library("limma")
```

```
targets <- readTargets("Targets.txt")</pre>
```

RG <- read.maimages(targets\$FileName, source="genepix")

...into RGList

- > names(RG)
 "R" "G" "Rb" "Gb" "targets" "genes"
 "source" "printer"
- > RG\$R[1,] s1 s2 s3 s4 [1,] 6207 39167 6696 6000

Quality Assessment vs Control

- Quality Assessment: computation and interpretation of metrics that are intended to measure quality
- Quality Control: possible subsequent action, removing bad array or re-doing part of the experiment

Quality Assessment

For each array:

- Diagnostics plots of spot statistics
 - e.g. R and G log-intensities, M, A, spot area.
 - Boxplots;
 - 2D spatial images;
 - Scatter-plots, e.g. MA-plots;
 - Density plots.
- Stratify plots according to layout parameters, *e.g.* print-tip-group, plate.
- summary statistics

Quality Filtering

HUTCHINSON

Spatial Effects – Image Plots

Spatial Effects

FRED HUTCHINSON CANCER RESEARCH CENTER

Spotting Pin Quality Decline

after delivery of 5x10⁵ spots

after delivery of 3x10⁵ spots

MA plot

Print-tip Effects – ECDF plot

PCR Plates - Boxplots

HUTCHINS

CENTER

Bioconductor QA packages

- Several packages
 - arrayMagic
 - arrayQuality
 - arrayQualityMetrics
- pdf or html

Diagnostic plot with arrayQuality

MA-Plot :: raw (1.4) (2.4) (3.4) (4.4) (6.4)((2.2) (3.2) (4.2) (5.2) (7.2) (7.2) (10.2) (10.2) (11.2) (12.2) (3.3) (4.3) (6.3) (7.3) (9.3) (10.3) (11.3) (12.3) (51) (61) (71) (81) (7.1) (8.1) (9.1) (10.1) (11.1) (0,4) (10,4 Σ et 2 - 1 - 1 - 2 - 2 - 2 8 10 12 14 16 diagPlot.6Hs.195.1.png : Qualitative Diagnostic Plots

Call list(maNormLoess(x = "maA", y = "maM", z = "maPrintTip", w = NULL, subset = subset, span = span, ...))

maA

Data Exploration with *limma*

(Limma user Guide)

Quality Assessment: Summary

- For each array:
- Diagnostics plots
- Stratify
- BioC packages:
- arrayQuality
- arrayMagic

Outline

- Data acquisition
- Pre-processing
 - Quality assessment
 - Pre-processing
 - background correction
 - normalization
 - summarization

Sources of Variation

- RNA extraction
- reverse transcription
- Iabeling efficienciesScanner settings

PCR

- DNA concentration
- Printing or pin
- cross-hybridization

Systematic

similar effect on many measurements
corrections can be estimated from data

Calibration

Stochastic

- too random to be explicitely accounted for
- "noise"

Error Model

Variance-Bias trade off

Background Correction

none

subtraction, movingmin

Minimun, edwards, normexp, ...

More details ... *limma* >?backgroundCorrect

Background Correction

none

substraction

normexp

Why Normalize?

Theory

Cy5 vs Cy3

Reality

Cy3

Normalization

Identify and remove the effects of systematic variation

- Normalization is closely related to quality assessment. In a ideal experiment, no normalization would be necessary, as the technical variations would have been avoided.
- Normalization is needed to ensure that differences in intensities are indeed due to differential expression, and not some printing, hybridization, or scanning artifact.
- Normalization is necessary before any analysis which involves within or between slide comparisons of intensities, e.g., clustering, testing.

Data Transformation

measured intensity = offset + gain × true abundance

$$Y_{ik} = B_{ik} + \alpha_{ik} S_k$$

Example: log transformation

Intensity measurements adapt a distribution that is closer to the normal distribution

Muliplicative noise becomes additive noise: variance more independent of intensity

Normalization methods

Smyth, G. K., and Speed, T. P. (2003). In: *METHODS: Selecting Candidate Genes from DNA Array Screens: Application to Neuroscience*

Two channel normalization

Location: centers log-ratios around zero using A and spatial dependent bias

Swirl 93 array: within-print-tip-group loess normalization log-ratio

Two channel normalization

Location: centers log-ratios around zero using A and spatial dependent bias

Scale: adjust for different in scale between multiple arrays

One channel normalization

- As technology improves the spot-to-spot varation is reduced
- Development of normalization techniques that work on the absolute intensities

Ex: quantile normalization (*limma*) variance stabilization (*vsn*)

Quantile Normalization

Bolstand et al.(2003)

HUTCHINS

DN TER

- Meaningful around 0
- Original intensities may be negatives

(Huber et al. 2004)

Variance stabilization (vsn)

Variance stabilization (vsn)

log-ratio	$\log \frac{X_i}{X_j}$
'glog' (generalized log-ratio)	$\log \frac{x_{i} + \sqrt{x_{i}^{2} + c_{i}^{2}}}{x_{j} + \sqrt{x_{j}^{2} + c_{j}^{2}}}$

- interpretation as "fold change"

+ interpretation even in cases where genes are off in some conditions (negative values)

+ visualization

+ can use standard statistical methods (hypothesis testing, ANOVA, clustering, classification...) without the worries about low-level variability that are often warranted on the log-scale

Preprocessing : Summary

For each array:

- Background correction or not
- Normalization: bias-variance trade-off
- Diagnostic plots

BioC pacakges:

- marray
- limma

- - -

