Analyzing One-Color Data with limma

James W. MacDonald
jmacdon@med.umich.edu

BioC 2008
July 28, 2008

Introduction

Assumptions

- Data are one-channel microarray data
- Affymetrix
- Nimblegen
- Possibly cDNA chip with common reference
- We assume data have been normalized and summarized
- Goal is to make comparisons
- t-tests
- linear models

limma package

Why limma?

- Pros
- Highly flexible
- Increased power
- Empirical Bayes
- Linear modeling
- Chip weighting
- Cons
- Complexity
- Design matrices
- Contrast matrices

Simple Example

Compare two groups

$$
t=\frac{\hat{x}-\hat{y}}{\frac{\hat{\sigma}}{\sqrt{N-1}}}
$$

Graphical Example

Graphics

Bioconductor

Introduction
Linear models
t-test
Weighting Chips
Higher-order Models Batch Effects

Graphics

Bioconductor

Design Matrix

```
> samples
[1] Control Control Control Tumor Tumor
[6] Tumor
Levels: Control Tumor
> design <- model.matrix(~0 + samples)
> colnames(design) <- levels(samples)
> design
    Control Tumor
1 1 0
2 1 0
3 1 0
4 0
5 0
6 0 1
attr(,"assign")
[1] 1 1
```


Contrast Matrix

Numerator
> contrast <- makeContrasts(Tumor - Control,

+ levels = design)
> contrast
Contrasts
Levels Tumor - Control
Control -1
Tumor 1

Empirical Bayes

Denominator
Remember 'standard' t-test:

$$
t=\frac{\hat{x}-\hat{y}}{\frac{\hat{\sigma}}{\sqrt{N-1}}}
$$

limma uses Empirical Bayes adjusted denominator:

$$
\begin{aligned}
t & =\frac{\hat{x}-\hat{y}}{s+s_{0}} \\
s & =\frac{\hat{\sigma}}{\sqrt{N-1}}
\end{aligned}
$$

Why adjust?

Why adjust?

Why adjust?

Why adjust?

t-test

Practice t-test

Load affy and limma libraries
Attach sample.ExpressionSet dataset
Look at phenoData object associated
Do a t-test comparing the male and female samples

t-test

> library(affy)
> library(limma)
> data(sample.ExpressionSet)
> eset <- sample.ExpressionSet
> head(pData(eset))
sex type score
A Female Control 0.75
B Male Case 0.40
C Male Control 0.73
D Male Case 0.42
E Female Case 0.93
F Male Control 0.22

t-test

> design <- model.matrix (~ 0 + pData(eset)[,1])
> colnames(design) <- levels(pData(eset)[,1])
> contrast <- makeContrasts(Male - Female,
$+\quad$ levels = design)
> fit <- lmFit(eset, design)
> fit2 <- contrasts.fit(fit, contrast)
> fit2 <- eBayes(fit2)

t-test

> head(topTable(fit2, coef = 1))

| | ID | | logFC | AveExpr |
| :--- | ---: | ---: | ---: | ---: | t

Dealing with Outliers

Principal Components Plot

Array Weights

> aw <- arrayWeights(eset, design)
> aw

1	2	3	4	5	6	7	8	9
0.81	0.69	1.06	1.46	1.68	1.37	0.65	0.83	0.72
10	11	12	13	14	15	16	17	18
0.83	1.04	2.58	0.82	0.84	1.43	1.11	0.99	0.73
19	20	21	22	23	24	25	26	
0.63	0.76	0.84	0.68	2.65	1.14	1.25	0.73	
$>$ fit <- lmFit(eset, design, weights $=$ aw)								

Two-factor ANOVA

sample.ExpressionSet Again
> head(pData(eset))

	sex	type	score
A	Female	Control	0.75
B	Male	Case	0.40
C	Male	Control	0.73
D	Male	Case	0.42
E Female	Case	0.93	
F	Male	Control	0.22

Design Matrix

> sex <- pData(eset)[,1]
> type <- pData(eset) [,2]
> design <- model.matrix(~ 0 + sex:type)
> colnames(design) <- c("Fem.Case","Male.Case",
$+$ "Fem.Contr", "Male.Contr")
> head(design)

	Fem.Case Male.Case	Fem. Contr	Male.Contr	
1	0	0	1	0
2	0	1	0	0
3	0	0	0	1
4	0	1	0	0
5	1	0	0	0
6	0	0	0	1

Comparisons

What comparisons can we make?

- Male vs Female
- Case vs Control
- Case vs Control within sex
- Interaction

t-test

ANOVA

Bioconductor

Introduction
Linear models

t-test

Weighting Chips
Higher-order Models
Batch Effects

Practice ANOVA

Can you do the following?

- Compare Female Cases vs Female Controls
- Compare Female Cases vs Male Cases

Create Contrasts Matrices

```
\(>\) contrast <- makeContrasts (Fem.Case - Fem.Contr,
\(+\)
\(+\quad\) levels \(=\) design)
> contrast
```

Contrasts
Levels Fem.Case - Fem.Contr
Fem.Case 1
Male.Case 0
Fem.Contr -1
Male.Contr 0

Contrasts
Levels Fem.Case - Male.Case
Fem.Case 1
Male.Case -1
Fem.Contr 0
Male.Contr 0

Fit Model and Compute Contrasts

> fit <- lmFit(eset, design)
> fit2 <- contrasts.fit(fit, contrast)
> fit2 <- eBayes(fit2)

Female Cases vs Controls

> head(topTable(fit2, coef = 1))

		ID		logFC	AveExpr
180	31419_r_at	-395	1447	-2.8	0.010
392	31631_f_at	27	-33	2.7	0.012
113	31352_at	-27	40	-2.7	0.013
374	31613_at	-44	77	-2.6	0.016
358	31597_r_at	-335	1634	-2.5	0.022
157	31396_r_at	-525	2504	-2.4	0.026
adj.P.Val			B		
180	0.75	-4.6			
392	0.75	-4.6			
113	0.75	-4.6			
374	0.75	-4.6			
358	0.75	-4.6			
157	0.75	-4.6			

Female Cases vs Male Cases

Bioconductor	> head(topTable(fit2, coef = 2))					
oduction				ID	logFC	AveExpr
Linear models	314			31553_at	17.2	7.2
t-test	382			31621_s_at	-142.8	516.6
Higher-order Models	206			31445_at	-63.5	134.8
	120			31359_at	11.7	11.9
	43	AFFX	-HUMRGE/	M10098_5_at	-53.0	15.0
	79			31318_at	-9.7	12.7
		t	P.Value	adj.P.Val	B	
	314	3.6	0.0016	0.49	-4.4	
	382	-3.5	0.0020	0.49	-4.4	
	206	-2.9	0.0075	0.93	-4.5	
	120	2.5	0.0209	0.93	-4.5	
	43	-2.5	0.0217	0.93	-4.5	
	79	-2.4	0.0235	0.93	-4.5	

Interaction

Interaction

$$
\text { interaction }=(\text { FemCase }- \text { FemContr })-(\text { MaleCase }- \text { MaleContr })
$$

Set up contrasts the same way:
> contrast <- makeContrasts((Fem.Case - Fem.Contr) -

+ (Male.Case - Male.Contr), levels = design)
> colnames(contrast) <- "Interaction"
> contrast
Contrasts
Levels Interaction
Fem.Case 1

Male.Case -1
Fem.Contr -1
Male.Contr 1

Batch Effects

- Batch effects can arise from
- Pairing
- Experiments run at different times
- Different reagents
- Watch out for
- Aliasing
- Creating batches unnecessarily
- Assuming batch effect when there isn't one

Pairing

- Mice first sampled as control then tumor introduced and re-sampled
- Wild type and mutant mice selected from several litters
- Several different cell lines treated similarly

Example Batch Effect

Example Batch Effect

Controlling for Batch

Fitting a Batch Effect

> treatment <- factor (rep(1:2, each = 12))
> treatment

$$
\text { [1] } \begin{array}{lllllllllllllllllllll}
& 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
$$

[21] 2222
Levels: 12
> batch <- factor (rep(1:2, each = 6, times = 2))
> batch

```
        [1] 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2
[21] 2 2 2 2
Levels: 1 2
```


Fitting a Batch Effect

> design <- model.matrix(~ 0 + treatment + batch)
> head(design)

Weighting Chips Higher-order Models Batch Effects
treatment1 treatment2 batch2

1	1	0	0
2	1	0	0
3	1	0	0
4	1	0	0
5	1	0	0
6	1	0	0

Multiple Comparisons

Setup:
We have compared two different drugs vs control and want to select significant genes

- decideTests()
- separate
- global
- hierarchical
- nestedF

Venn Diagram

> rslt <- decideTests (fit2, method = "nestedF")
> vc <- vennCounts (rslt)
> vennDiagram(vc)

Volcano Plot

> volcanoplot(fit2)

