Bioconductor

Introduction

Linear model t-test Weighting Chips Higher-order Mode Batch Effects

Analyzing One-Color Data with limma

James W. MacDonald jmacdon@med.umich.edu

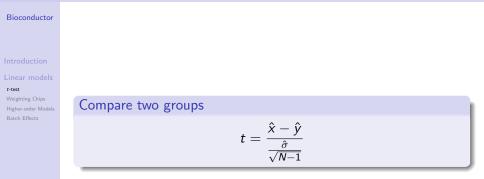
> BioC 2008 July 28, 2008

> > ▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Introduction

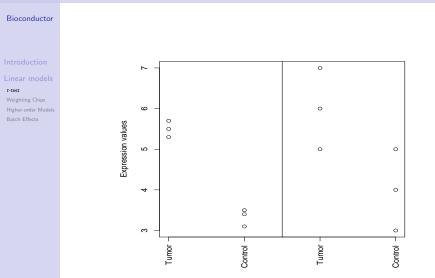
Bioconductor Introduction Assumptions Data are one-channel microarray data Affymetrix Nimblegen Possibly cDNA chip with common reference We assume data have been normalized and summarized • Goal is to make comparisons

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


- *t*-tests
- linear models

limma package

Bioconductor Why limma? Introduction Pros Highly flexible Increased power • Empirical Bayes • Linear modeling • Chip weighting Cons Complexity Design matrices Contrast matrices


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Simple Example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Graphical Example

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Graphics

Bioconductor

Introduction

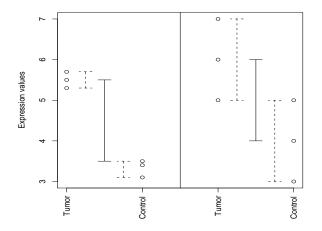
Linear models

t-test

Weighting Chips Higher-order Models Batch Effects

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Graphics


Bioconductor

Introduction

Linear models

t-test

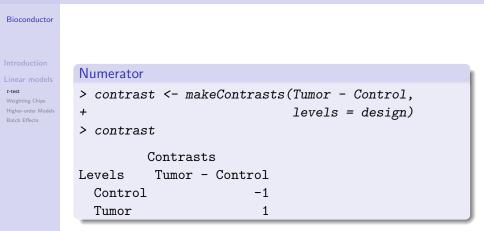
Weighting Chips Higher-order Models Batch Effects

Design Matrix

Bioconductor

t-test

- > samples
- [1] Control Control Control Tumor Tumor


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- [6] Tumor
- Levels: Control Tumor
- > design <- model.matrix(~0 + samples)</pre>
- > colnames(design) <- levels(samples)</pre>
- > design

Control Tumor

1	1	0
2	1	0
3	1	0
4	0	1
5	0	1
6	0	1
attr(,"assig	gn")
[1] 1	1	

Contrast Matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

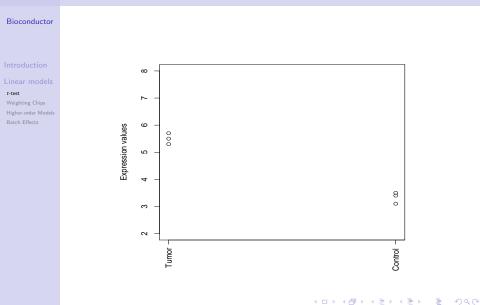
Empirical Bayes

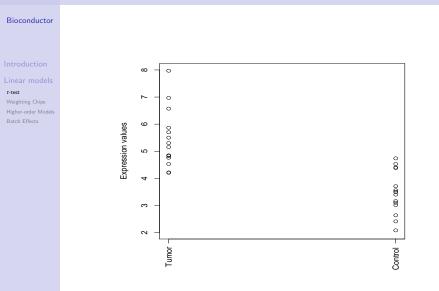
Bioconductor

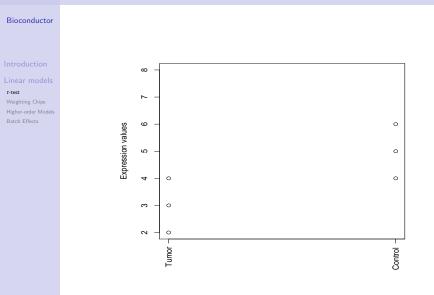
Denominator

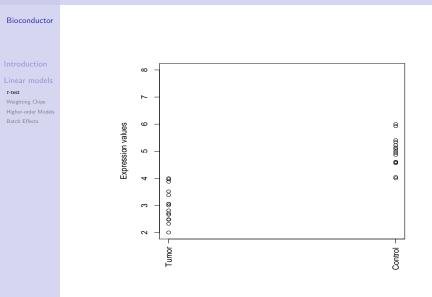
Remember 'standard' *t*-test:

$$t = rac{\hat{x} - \hat{y}}{rac{\hat{\sigma}}{\sqrt{N-1}}}$$


limma uses Empirical Bayes adjusted denominator:


$$t = \frac{\hat{x} - \hat{y}}{s + s_0}$$
$$s = \frac{\hat{\sigma}}{\sqrt{N - 1}}$$


▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ


t-test

Weighting Chips Higher-order Models Batch Effects

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

	cc				

Introduction

Linear models

t-test

Weighting Chips Higher-order Models Batch Effects

Practice *t*-test

Load affy and limma libraries Attach sample.ExpressionSet dataset Look at phenoData object associated Do a *t*-test comparing the male and female samples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bioconductor > library(affy) > library(limma) > data(sample.ExpressionSet) t-test > eset <- sample.ExpressionSet</p> > head(pData(eset)) sex type score A Female Control 0.75 В Male Case 0.40 С Male Control 0.73 D Male Case 0.42 E. Female Case 0.93 F Male Control 0.22

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Bioconductor

Introduction

Linear mod

t-test

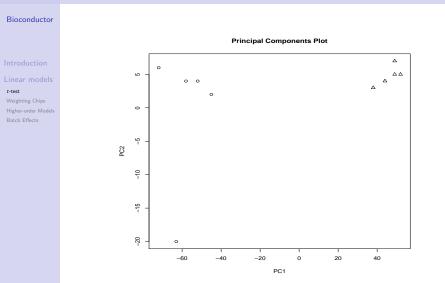
Weighting Chips Higher-order Models Batch Effects ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> fit2 <- eBayes(fit2)</pre>

Bioconductor

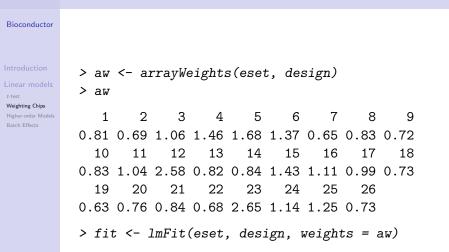
Introduction

Linear models


t-test

Weighting Chips Higher-order Models Batch Effects

>	head	(topTable	(fit2,	coef =	1))
---	------	-----------	--------	--------	-----


	II) logF(C AveExpr	t			
314	31553_at	-11.3	3 7.2	-2.8			
98	31337_at	97.2	422.8	2.6			
303	31542_at	9.4	13.0	2.5			
310	31549_at	-7.1	. 19.6	-2.2			
4	AFFX-MurFAS_at	-7.3	13.9	-2.2			
149	31388_at	16.4	33.2	2.2			
	P.Value adj.P.	Val	В				
314	0.009 (.99 -4	.6				
98	0.016 0	.99 -4	.6				
303	0.022 0	.99 -4	.6				
310	0.036 (.99 -4	.6				
4	0.036 0	.99 -4	.6				
149	0.040 0	.99 -4					
			. €		★ 豊 ▶ ★ 豊 ▶	- E	$\mathcal{O}\mathcal{A}\mathcal{O}$

Dealing with Outliers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

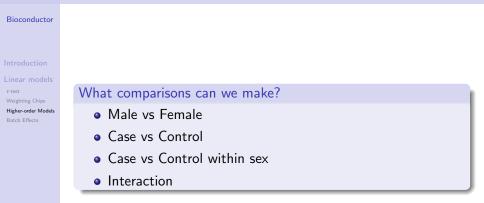
Array Weights

Two-factor ANOVA

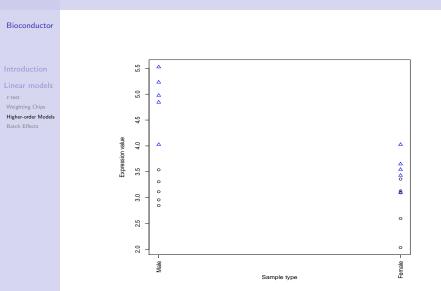
Bioconductor sample.ExpressionSet Again > head(pData(eset)) Higher-order Models sex type score A Female Control 0.75 Male Case 0.40 B C Male Control 0.73 Male Case 0.42 D E Female Case 0.93 Male Control 0.22 F

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Design Matrix


Bioconductor

Higher-order Mo


	> sez	sex <- pData(eset)[,1]						
n	> typ	> type <- pData(eset)[,2]						
lels	> des	sign <- mod	lel.matrix	(~ 0 + sex.	type)			
6	> co1	lnames(desi	gn) <- c("Fem.Case"	"Male.Case",			
odels	+			"Fem.Contr	","Male.Contr"))		
	> hea	ad(design)						
	Fen	n.Case Male	.Case Fem	.Contr Male	e.Contr			
	1	0	0	1	0			
	2	0	1	0	0			
	3	0	0	0	1			
	4	0	1	0	0			
	5	1	0	0	0			
	6	0	0	0	1			

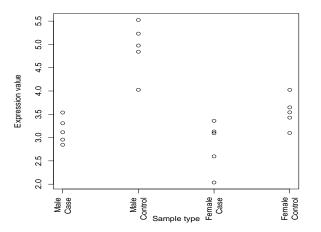
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Comparisons

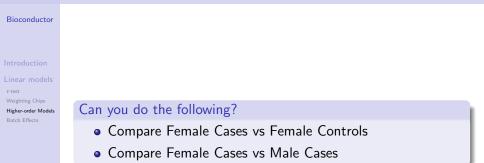
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(ロ)、(型)、(E)、(E)、 E) の(()

ANOVA


Introduction

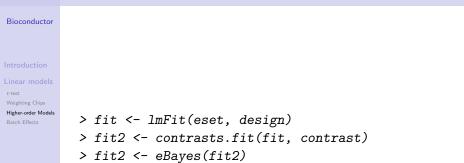
Linear models


Weighting Chir

Higher-order Models

Batch Effects

Practice ANOVA



▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Create Contrasts Matrices

Bioconductor Introduction Linear models	> contrast <- ma + + > contrast	akeContrasts(Fem.Case - Fem.Contr, Fem.Case - Male.Case, levels = design)
t-test Weighting Chips Higher-order Models	Cont	crasts
Batch Effects	Levels Fer	n.Case - Fem.Contr
	Fem.Case	1
	Male.Case	0
	Fem.Contr	-1
	Male.Contr	0
	Cont	trasts
	Levels Fer	n.Case - Male.Case
	Fem.Case	1
	Male.Case	-1
	Fem.Contr	0
	Male.Contr	< D × 4日 × 4 目 × 4 目 × 4 目 × 9 4 0

Fit Model and Compute Contrasts

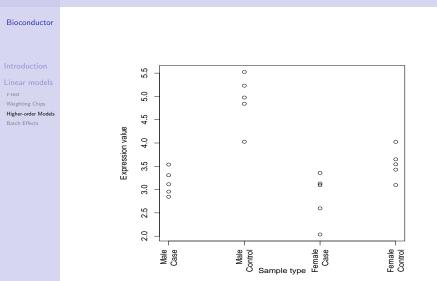
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Female Cases vs Controls

Bioconductor

Higher-order Models

> head(topTable(fit2, coef = 1))

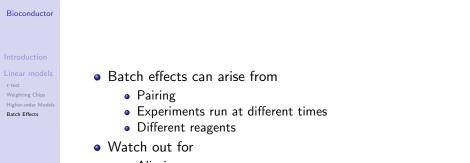

	ID	logFC	AveExpr	t	P.Value
180	31419_r_at	-395	1447	-2.8	0.010
392	31631_f_at	27	-33	2.7	0.012
113	31352_at	-27	40	-2.7	0.013
374	31613_at	-44	77	-2.6	0.016
358	31597_r_at	-335	1634	-2.5	0.022
157	31396_r_at	-525	2504	-2.4	0.026
	adj.P.Val	В			
180	0.75 -	-4.6			
392	0.75 -	-4.6			
113	0.75 -	-4.6			
374	0.75 -	-4.6			
358	0.75 -	-4.6			
157	0.75 -	-4.6			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Female Cases vs Male Cases

Bioconductor	> head(topTable(fit2, coef = 2))
Introduction Linear models r-test Weighting Chips Higher-order Models Batch Effects	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Interaction


Interaction

Bioconductor

Higher-order Models

interaction = (*FemCase* - *FemContr*) - (*MaleCase* - *MaleContr*) Set up contrasts the same way: > contrast <- makeContrasts((Fem.Case - Fem.Contr) -</pre> (Male.Case - Male.Contr), + levels = design) + > colnames(contrast) <- "Interaction"</pre> > contrast Contrasts Levels Interaction Fem.Case 1 Male.Case -1 Fem.Contr -1 Male.Contr 1 ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Batch Effects

- Aliasing
- Creating batches unnecessarily
- Assuming batch effect when there isn't one

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

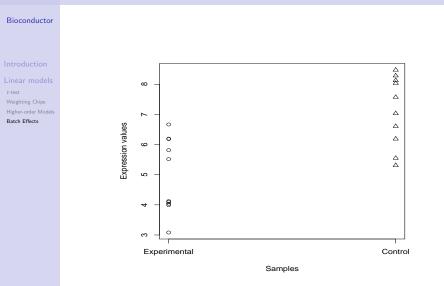
Pairing

Bioconductor

Introduction

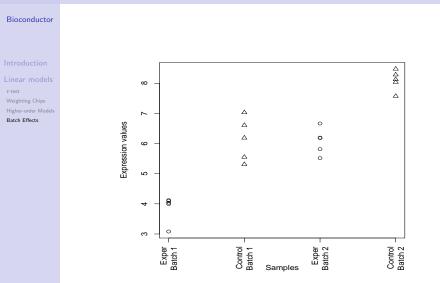
Linear models

Weighting Chin

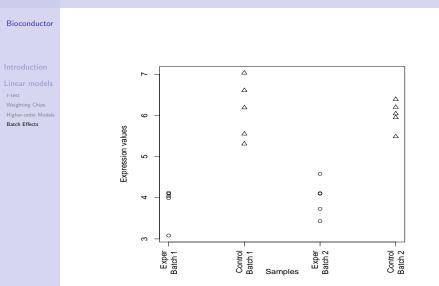

Higher-order Mode

Batch Effects

- Mice first sampled as control then tumor introduced and re-sampled
- Wild type and mutant mice selected from several litters
- Several different cell lines treated similarly


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

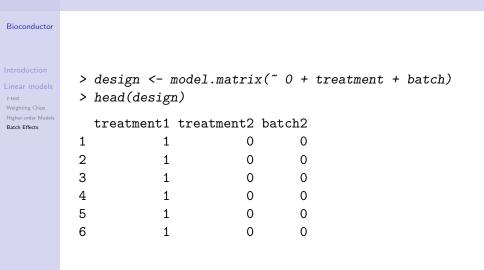
Example Batch Effect



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

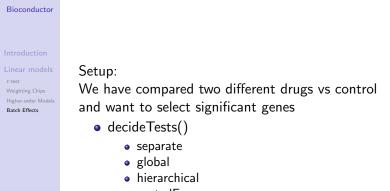
Example Batch Effect

Controlling for Batch



<ロト < 団 > < 臣 > < 臣 > < 臣 > ○ Q ()

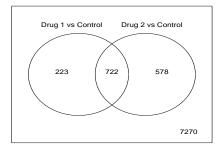
	Fitting a Batch Effect
Bioconductor Introduction Linear models r-test Weighting Chips Higher-order Models Batch Effects	<pre>> treatment <- factor(rep(1:2, each = 12)) > treatment [1] 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2</pre>
	Levels: 1 2


・ロト・国ト・ヨト・ヨー うへの

Fitting a Batch Effect

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Multiple Comparisons


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 \bullet nestedF

Venn Diagram

Bioconductor

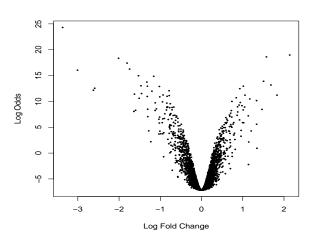
- > rslt <- decideTests(fit2, method = "nestedF")</pre>
- > vc <- vennCounts(rslt)</pre>
- > vennDiagram(vc)

- _inear models
- Weighting Chips
- Higher-order Models
- Batch Effects

Volcano Plot

> volcanoplot(fit2)

Bioconductor


Introduction

Linear model

Weighting Chin

Higher-order Model

Batch Effects

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆