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Overview

NGS perspective on IRanges package

• Representation of information on chromosomes/contigs
• Intervals with or without associated data
• Piecewise constant measures (e.g. coverage)

• Vector and interval operations for these representations
• Interval overlap calculations
• Coverage area within peak regions

• Metadata scheme for self-documenting objects
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Main Take Away

Two most important classes in IRanges

• RangedData - intervals and associated data on
chromosomes/contigs. It can be conceptualized as a data
table that is sorted by the chromosomes/contigs indicator
column.

• RleList - coverage (or other piecewise constant measures) on
chromosomes/contigs. RLE is an initialism for run length
encoding, a standard compression method in signal processing.
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Background

Intervals with corresponding data row

• Genomic coordinates consist of chromosome, position, and
potentially strand information

• Each coordinate or set of coordinates may have additional
values associated with it, such as GC content or alignment
coverage

• A collection of intervals with data are commonly called tracks
in genome browsers



Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Naive Approach in R

Naive representation of intervals with data row (1/2)

• Tables in R are commonly stored in data.frame objects.

data.frame approach

> chr <- c("chr1", "chr2", "chr1")

> strand <- c("+", "+", "-")

> start <- c(3L, 4L, 1L)

> end <- c(7L, 5L, 3L)

> naiveTable <- data.frame(chr = chr,

+ strand = strand, start = start,

+ end = end)

> naiveTable

chr strand start end
1 chr1 + 3 7
2 chr2 + 4 5
3 chr1 - 1 3
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Naive Approach in R

Naive representation of intervals with data row (2/2)

• data.frame objects are poorly suited for this data because
operations are constantly performed within
chromosome/contig.

Using by to loop over data.frame

> by(naiveTable, naiveTable[["chr"]],

+ function(x) range(x[c("start",

+ "end")]))

naiveTable[["chr"]]: chr1
[1] 1 7
----------------------------------
naiveTable[["chr"]]: chr2
[1] 4 5
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RangedData Representation

RangedData construction

• Instances are created using the RangedData constructor.

• Interval starts and ends are wrapped in an IRanges
constructor.

• Chromosome/contig information is supplied to space
argument.

> rdTable <- RangedData(ranges = IRanges(start = start,

+ end = end), strand = strand, space = chr)
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RangedData Representation

RangedData display

• The RangedData class sacrifices table row order flexibility for
faster computational timings.

> rdTable

RangedData with 3 rows and 1 value column across 2 spaces
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [3, 7] | +
2 chr1 [1, 3] | -
3 chr2 [4, 5] | +
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RangedData Representation

RangedData computation

Simplified looping

> range(ranges(rdTable))

CompressedIRangesList of length 2
$chr1
IRanges of length 1

start end width
[1] 1 7 7

$chr2
IRanges of length 1

start end width
[1] 4 5 2
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RangedData Representation

RangedData class decomposition

• RangedData
• RangesList - intervals on chromosomes/contigs. Extracted

using the ranges function.
• Ranges - intervals for a specific chromosome/contig. Most

common subclass is IRanges.

• SplitDataFrameList - data on chromosomes/contigs.
Extracted using the values function.

• DataFrame - data for a specific chromosome/contig.
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Interval Operations

Interval operations

Intra-interval : flank, narrow, reflect, resize, restrict,
shift

Inter-interval I : disjoin, gaps, reduce, range

Inter-interval II : coverage

Between two interval sets I : intersect, setdiff, union

Between two interval sets II : findOverlaps, %in%, match

Low level : start, end, width, space, universe
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Interval Operations

Creating a new RangedData object

New object to use in interval operations

> ir <- IRanges(c(1, 8, 14, 15, 19, 34,

+ 40), width = c(12, 6, 6, 15, 6,

+ 2, 7))

> strand <- rep(c("+", "-"), c(4, 3))

> rd <- RangedData(ranges = ir, strand = strand,

+ space = "chr1")

ranges(rd)[["chr1"]]

0 10 20 30 40



Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Low level data access

Accessors

> start(rd)

[1] 1 8 14 15 19 34 40

> end(rd)

[1] 12 13 19 29 24 35 46

> width(rd)

[1] 12 6 6 15 6 2 7
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Interval Operations

RangedData subsetting

> rd[1:5, ]

RangedData with 5 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [ 1, 12] | +
2 chr1 [ 8, 13] | +
3 chr1 [14, 19] | +
4 chr1 [15, 29] | +
5 chr1 [19, 24] | -
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Interval Operations

Shifting intervals

• If your interval bounds are off by 1, you can shift them.

> rd2 <- rd

> ranges(rd2) <- shift(ranges(rd2), 1)

> rd2

RangedData with 7 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [ 2, 13] | +
2 chr1 [ 9, 14] | +
3 chr1 [15, 20] | +
4 chr1 [16, 30] | +
5 chr1 [20, 25] | -
6 chr1 [35, 36] | -
7 chr1 [41, 47] | -
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Interval Operations

Resizing intervals (1/2)

• One common operation in ChIP-seq experiments is to “grow”
and alignment interval to an estimated fragment length.

> rd3 <- rd

> pos <- values(rd3)[, "strand"] == "+"

> ranges(rd3)[pos] <- resize(ranges(rd)[pos],

+ 120)

> ranges(rd3)[!pos] <- resize(ranges(rd)[!pos],

+ 120, start = FALSE)
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Interval Operations

Resizing intervals (2/2)

> rd3

RangedData with 7 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [ 1, 120] | +
2 chr1 [ 8, 127] | +
3 chr1 [ 14, 133] | +
4 chr1 [ 15, 134] | +
5 chr1 [-95, 24] | -
6 chr1 [-84, 35] | -
7 chr1 [-73, 46] | -
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Interval Operations

Restricting interval bounds

• The previous operation created some negative start values.
We can “clip” those negative values.

> ranges(rd3) <- restrict(ranges(rd3),

+ 1)

> rd3

RangedData with 7 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [ 1, 120] | +
2 chr1 [ 8, 127] | +
3 chr1 [14, 133] | +
4 chr1 [15, 134] | +
5 chr1 [ 1, 24] | -
6 chr1 [ 1, 35] | -
7 chr1 [ 1, 46] | -



Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Normalizing intervals

• Ranges can represent a set of integers

• NormalIRanges formalizes this, with a compact, normalized
representation

• reduce normalizes ranges

Code

> reduce(ranges(rd))
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Interval Operations

Normalizing intervals

Code

> reduce(ranges(rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

reduce(ranges(rd))[["chr1"]]

0 10 20 30 40
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Interval Operations

Set operations

• Ranges as set of integers: intersect, union, gaps, setdiff

• Each range as integer set, in parallel: pintersect, punion,
pgap, psetdiff

Example: gaps

> gaps(ranges(rd))
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Interval Operations

Set operations

Example: gaps

> gaps(ranges(rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

gaps(ranges(rd))[["chr1"]]

0 10 20 30 40
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Interval Operations

Disjoining intervals

• Disjoint ranges are non-overlapping

• disjoin returns the widest ranges where the overlapping
ranges are the same

Code

> disjoin(ranges(rd))
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Interval Operations

Disjoining intervals

Code

> disjoin(ranges(rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

disjoin(ranges(rd))[["chr1"]]

0 10 20 30 40
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Interval Operations

Overlap detection

• overlap detects overlaps between two Ranges objects

• Uses interval tree for efficiency

Code

> ol <- findOverlaps(ranges(rd), reduce(ranges(rd)))

> as.matrix(ol)

query subject
[1,] 1 1
[2,] 2 1
[3,] 3 1
[4,] 4 1
[5,] 5 1
[6,] 6 2
[7,] 7 3



Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Counting overlapping intervals

coverage counts number of ranges over each position

Code

> cover <- coverage(ranges(rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

0
1

2
3

4



Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Finding nearest neighbors

• nearest finds the nearest neighbor ranges (overlapping is
zero distance)

• precede, follow find non-overlapping nearest neighbors on
specific side
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Background

Positional piecewise constant measures

• The number of genomic positions in a genome is often in the
billons for higher organisms, making it challenging to
represent in memory.

• Some data across a genome tend to be sparse (i.e. large
stretches of “no information”)

• The IRanges packages solves the set of problems for positional
measures that tend to have consecutively repeating values.

• The IRanges package does not address the more general
problem of positional measures that constantly fluxuate, such
as conservation scores.
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Background

Example sequence

0 50 100 150

0
2

4
6

8
10

Index

s
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RLEs

Run-Length Encodings (RLEs)

Our example has many repeated values:

Code

> sum(diff(s) == 0)

[1] 133

Good candidate for compression by run-length encoding:

Code

> sRle <- Rle(s)

> sRle

'numeric' Rle of length 156 with 23 runs
Lengths: 40 1 2 3 1 2 3 1 2 3 ...
Values : 0 1 2 3 4 5 6 7 8 9 ...

Compression reduces size from 156 to 46.
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RLEs

Rle operations

The Rle object shares many method interfaces with vector:

Basic

> sRle > 0 | rev(sRle) > 0

'logical' Rle of length 156 with 3 runs
Lengths: 40 76 40
Values : FALSE TRUE FALSE

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557
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Views

• Associates a Ranges object with a sequence

• Sequences can be Rle or (in Biostrings) XString

• Extends Ranges, so supports the same operations
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Slicing a Sequence into Views

Goal: find regions above cutoff of 3

0 50 100 150

0
2

4
6

8
10

Index

s
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Slicing a Sequence into Views

Goal: find regions above cutoff of 3

Using Rle

> Views(sRle, as(sRle > 3, "IRanges"))

Views on a 156-length Rle subject

views:
start end width

[1] 47 67 21 [ 4 5 5 6 6 6 ...]
[2] 86 100 15 [5 5 5 5 5 5 5 5 5 ...]

Convenience

> sViews <- slice(sRle, 4)

> sViewsList <- RleViewsList(slice(sRle,

+ 4), slice(rev(sRle), 4))
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Summarizing windows

• Could sapply over each window
• Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Code

> viewSums(sViews)

[1] 150 72

> viewSums(sViewsList)

SimpleNumericList of length 2
[[1]] 150 72
[[2]] 72 150

> viewMaxs(sViews)

[1] 10 5

> viewMaxs(sViewsList)

SimpleNumericList of length 2
[[1]] 10 5
[[2]] 5 10


	Outline
	Introduction
	Overview
	Main Take Away

	Intervals with Data
	Background
	Naive Approach in R
	RangedData Representation
	Interval Operations

	Positional Piecewise Constant Measures
	Background
	RLEs

	Views

