
Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Intervals and Data on Intervals in BioC
The IRanges Package

November 18, 2009

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

1 Introduction
Overview
Main Take Away

2 Intervals with Data
Background
Naive Approach in R
RangedData Representation
Interval Operations

3 Positional Piecewise Constant Measures
Background
RLEs

4 Views

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Outline

1 Introduction
Overview
Main Take Away

2 Intervals with Data
Background
Naive Approach in R
RangedData Representation
Interval Operations

3 Positional Piecewise Constant Measures
Background
RLEs

4 Views

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Overview

NGS perspective on IRanges package

• Representation of information on chromosomes/contigs
• Intervals with or without associated data
• Piecewise constant measures (e.g. coverage)

• Vector and interval operations for these representations
• Interval overlap calculations
• Coverage area within peak regions

• Metadata scheme for self-documenting objects

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Main Take Away

Two most important classes in IRanges

• RangedData - intervals and associated data on
chromosomes/contigs. It can be conceptualized as a data
table that is sorted by the chromosomes/contigs indicator
column.

• RleList - coverage (or other piecewise constant measures) on
chromosomes/contigs. RLE is an initialism for run length
encoding, a standard compression method in signal processing.

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Outline

1 Introduction
Overview
Main Take Away

2 Intervals with Data
Background
Naive Approach in R
RangedData Representation
Interval Operations

3 Positional Piecewise Constant Measures
Background
RLEs

4 Views

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Background

Intervals with corresponding data row

• Genomic coordinates consist of chromosome, position, and
potentially strand information

• Each coordinate or set of coordinates may have additional
values associated with it, such as GC content or alignment
coverage

• A collection of intervals with data are commonly called tracks
in genome browsers

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Naive Approach in R

Naive representation of intervals with data row (1/2)

• Tables in R are commonly stored in data.frame objects.

data.frame approach

> chr <- c("chr1", "chr2", "chr1")

> strand <- c("+", "+", "-")

> start <- c(3L, 4L, 1L)

> end <- c(7L, 5L, 3L)

> naiveTable <- data.frame(chr = chr,

+ strand = strand, start = start,

+ end = end)

> naiveTable

chr strand start end
1 chr1 + 3 7
2 chr2 + 4 5
3 chr1 - 1 3

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Naive Approach in R

Naive representation of intervals with data row (2/2)

• data.frame objects are poorly suited for this data because
operations are constantly performed within
chromosome/contig.

Using by to loop over data.frame

> by(naiveTable, naiveTable[["chr"]],

+ function(x) range(x[c("start",

+ "end")]))

naiveTable[["chr"]]: chr1
[1] 1 7

naiveTable[["chr"]]: chr2
[1] 4 5

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

RangedData Representation

RangedData construction

• Instances are created using the RangedData constructor.

• Interval starts and ends are wrapped in an IRanges
constructor.

• Chromosome/contig information is supplied to space
argument.

> rdTable <- RangedData(ranges = IRanges(start = start,

+ end = end), strand = strand, space = chr)

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

RangedData Representation

RangedData display

• The RangedData class sacrifices table row order flexibility for
faster computational timings.

> rdTable

RangedData with 3 rows and 1 value column across 2 spaces
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [3, 7] | +
2 chr1 [1, 3] | -
3 chr2 [4, 5] | +

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

RangedData Representation

RangedData computation

Simplified looping

> range(ranges(rdTable))

CompressedIRangesList of length 2
$chr1
IRanges of length 1

start end width
[1] 1 7 7

$chr2
IRanges of length 1

start end width
[1] 4 5 2

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

RangedData Representation

RangedData class decomposition

• RangedData
• RangesList - intervals on chromosomes/contigs. Extracted

using the ranges function.
• Ranges - intervals for a specific chromosome/contig. Most

common subclass is IRanges.

• SplitDataFrameList - data on chromosomes/contigs.
Extracted using the values function.

• DataFrame - data for a specific chromosome/contig.

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Interval operations

Intra-interval : flank, narrow, reflect, resize, restrict,
shift

Inter-interval I : disjoin, gaps, reduce, range

Inter-interval II : coverage

Between two interval sets I : intersect, setdiff, union

Between two interval sets II : findOverlaps, %in%, match

Low level : start, end, width, space, universe

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Creating a new RangedData object

New object to use in interval operations

> ir <- IRanges(c(1, 8, 14, 15, 19, 34,

+ 40), width = c(12, 6, 6, 15, 6,

+ 2, 7))

> strand <- rep(c("+", "-"), c(4, 3))

> rd <- RangedData(ranges = ir, strand = strand,

+ space = "chr1")

ranges(rd)[["chr1"]]

0 10 20 30 40

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Low level data access

Accessors

> start(rd)

[1] 1 8 14 15 19 34 40

> end(rd)

[1] 12 13 19 29 24 35 46

> width(rd)

[1] 12 6 6 15 6 2 7

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

RangedData subsetting

> rd[1:5,]

RangedData with 5 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [1, 12] | +
2 chr1 [8, 13] | +
3 chr1 [14, 19] | +
4 chr1 [15, 29] | +
5 chr1 [19, 24] | -

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Shifting intervals

• If your interval bounds are off by 1, you can shift them.

> rd2 <- rd

> ranges(rd2) <- shift(ranges(rd2), 1)

> rd2

RangedData with 7 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [2, 13] | +
2 chr1 [9, 14] | +
3 chr1 [15, 20] | +
4 chr1 [16, 30] | +
5 chr1 [20, 25] | -
6 chr1 [35, 36] | -
7 chr1 [41, 47] | -

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Resizing intervals (1/2)

• One common operation in ChIP-seq experiments is to “grow”
and alignment interval to an estimated fragment length.

> rd3 <- rd

> pos <- values(rd3)[, "strand"] == "+"

> ranges(rd3)[pos] <- resize(ranges(rd)[pos],

+ 120)

> ranges(rd3)[!pos] <- resize(ranges(rd)[!pos],

+ 120, start = FALSE)

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Resizing intervals (2/2)

> rd3

RangedData with 7 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [1, 120] | +
2 chr1 [8, 127] | +
3 chr1 [14, 133] | +
4 chr1 [15, 134] | +
5 chr1 [-95, 24] | -
6 chr1 [-84, 35] | -
7 chr1 [-73, 46] | -

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Restricting interval bounds

• The previous operation created some negative start values.
We can “clip” those negative values.

> ranges(rd3) <- restrict(ranges(rd3),

+ 1)

> rd3

RangedData with 7 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [1, 120] | +
2 chr1 [8, 127] | +
3 chr1 [14, 133] | +
4 chr1 [15, 134] | +
5 chr1 [1, 24] | -
6 chr1 [1, 35] | -
7 chr1 [1, 46] | -

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Normalizing intervals

• Ranges can represent a set of integers

• NormalIRanges formalizes this, with a compact, normalized
representation

• reduce normalizes ranges

Code

> reduce(ranges(rd))

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Normalizing intervals

Code

> reduce(ranges(rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

reduce(ranges(rd))[["chr1"]]

0 10 20 30 40

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Set operations

• Ranges as set of integers: intersect, union, gaps, setdiff

• Each range as integer set, in parallel: pintersect, punion,
pgap, psetdiff

Example: gaps

> gaps(ranges(rd))

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Set operations

Example: gaps

> gaps(ranges(rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

gaps(ranges(rd))[["chr1"]]

0 10 20 30 40

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Disjoining intervals

• Disjoint ranges are non-overlapping

• disjoin returns the widest ranges where the overlapping
ranges are the same

Code

> disjoin(ranges(rd))

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Disjoining intervals

Code

> disjoin(ranges(rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

disjoin(ranges(rd))[["chr1"]]

0 10 20 30 40

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Overlap detection

• overlap detects overlaps between two Ranges objects

• Uses interval tree for efficiency

Code

> ol <- findOverlaps(ranges(rd), reduce(ranges(rd)))

> as.matrix(ol)

query subject
[1,] 1 1
[2,] 2 1
[3,] 3 1
[4,] 4 1
[5,] 5 1
[6,] 6 2
[7,] 7 3

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Counting overlapping intervals

coverage counts number of ranges over each position

Code

> cover <- coverage(ranges(rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

0
1

2
3

4

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Interval Operations

Finding nearest neighbors

• nearest finds the nearest neighbor ranges (overlapping is
zero distance)

• precede, follow find non-overlapping nearest neighbors on
specific side

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Outline

1 Introduction
Overview
Main Take Away

2 Intervals with Data
Background
Naive Approach in R
RangedData Representation
Interval Operations

3 Positional Piecewise Constant Measures
Background
RLEs

4 Views

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Background

Positional piecewise constant measures

• The number of genomic positions in a genome is often in the
billons for higher organisms, making it challenging to
represent in memory.

• Some data across a genome tend to be sparse (i.e. large
stretches of “no information”)

• The IRanges packages solves the set of problems for positional
measures that tend to have consecutively repeating values.

• The IRanges package does not address the more general
problem of positional measures that constantly fluxuate, such
as conservation scores.

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Background

Example sequence

0 50 100 150

0
2

4
6

8
10

Index

s

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

RLEs

Run-Length Encodings (RLEs)

Our example has many repeated values:

Code

> sum(diff(s) == 0)

[1] 133

Good candidate for compression by run-length encoding:

Code

> sRle <- Rle(s)

> sRle

'numeric' Rle of length 156 with 23 runs
Lengths: 40 1 2 3 1 2 3 1 2 3 ...
Values : 0 1 2 3 4 5 6 7 8 9 ...

Compression reduces size from 156 to 46.

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

RLEs

Rle operations

The Rle object shares many method interfaces with vector:

Basic

> sRle > 0 | rev(sRle) > 0

'logical' Rle of length 156 with 3 runs
Lengths: 40 76 40
Values : FALSE TRUE FALSE

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Outline

1 Introduction
Overview
Main Take Away

2 Intervals with Data
Background
Naive Approach in R
RangedData Representation
Interval Operations

3 Positional Piecewise Constant Measures
Background
RLEs

4 Views

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Views

• Associates a Ranges object with a sequence

• Sequences can be Rle or (in Biostrings) XString

• Extends Ranges, so supports the same operations

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

0 50 100 150

0
2

4
6

8
10

Index

s

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

Using Rle

> Views(sRle, as(sRle > 3, "IRanges"))

Views on a 156-length Rle subject

views:
start end width

[1] 47 67 21 [4 5 5 6 6 6 ...]
[2] 86 100 15 [5 5 5 5 5 5 5 5 5 ...]

Convenience

> sViews <- slice(sRle, 4)

> sViewsList <- RleViewsList(slice(sRle,

+ 4), slice(rev(sRle), 4))

Outline Introduction Intervals with Data Positional Piecewise Constant Measures Views

Summarizing windows

• Could sapply over each window
• Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Code

> viewSums(sViews)

[1] 150 72

> viewSums(sViewsList)

SimpleNumericList of length 2
[[1]] 150 72
[[2]] 72 150

> viewMaxs(sViews)

[1] 10 5

> viewMaxs(sViewsList)

SimpleNumericList of length 2
[[1]] 10 5
[[2]] 5 10

	Outline
	Introduction
	Overview
	Main Take Away

	Intervals with Data
	Background
	Naive Approach in R
	RangedData Representation
	Interval Operations

	Positional Piecewise Constant Measures
	Background
	RLEs

	Views

