Analysing RNA-Seq data with the DESeq package

Simon Anders
European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
sanders@fs.tum.de

July 22, 2011

Abstract

A basic task in the analysis of count data from RNA-Seq is the detection of differentially expressed genes. The count data are presented as a table which reports, for each sample, the number of reads that have been assigned to a gene. Analogous analyses also arise for other assay types, such as comparative ChIP-Seq. The package DESeq provides a method to test for differential expression by use of a shrinkage estimtor for the varianc \S^{1} This vignette explains the use of the package. For an exposition of the statistical method employed, please see our paper [1].

Contents

1 Input data and preparations 2
2 Variance estimation 4
3 Inference: Calling differential expression $\mathbf{7}$
3.1 Standard comparison between two experimental conditions 7
3.2 Working partially without replicates . 11
3.3 Working without any replicates . 13

4 Multi-factor designs 14
5 Moderated fold change estimates and applications to sample clustering and
visualisation
18
6 Further reading 21
7 Session Info 22
${ }^{1}$ Other Bioconductor packages for this use case are edgeR and baySeq.

1 Input data and preparations

The DESeq package expects count data, as obtained, e.g., from an RNA-Seq or other highthroughput sequencing (HTS) experiment, in the form of a matrix of integer values. Each column corresponds to a sample, e.g., one library preparation or one lane. The rows correspond to the entities for which you want to compare coverage, e.g. to a gene, to a binding region in a ChIP-Seq dataset, a window in CNV-Seq or the like. So, for a typical RNA-Seq experiment, each element in the table tells how many reads have been mapped in a given sample to a given gene.

To obtain such a count table for your own data, you will need to create it from the sequence alignments by use of tools outside of the DESeq package. For instance, in the course materials available on the Bioconductor web page, there are examples for how to do this with the ShortRead and IRanges packages. The Bioconductor package easyrnaseq (by Nicolas Delhomme; in preparation, available soon; package name may change) will offer this functionality in a convenient manner.

Another easy way to produce such a table from the output of the aligner is to use the htseqcount script distributed with the HTSeq package. Even though HTSeq is a Python package, you do not need to know any Python to use htseq-count. See http://www-huber.embl.de/users/ anders/HTSeq/doc/count.html.

The count values must be raw counts of sequencing reads. This is important for DESeq's statistical model to hold, as only raw reads allow to assess the measurement precision correctly. (Hence, do not supply rounded values of normalized counts, or counts of covered base pairs.)

Furthermore, it is important that each column stems from an independent biological replicate. For purely technical replicates (e.g. when the same library preparation was distributed over multiple lanes of the sequencer in order to increase coverage), please sum up their counts to get a single column, corresponding to a unique biological replicate. This is needed in order to allow $D E S E q$ to estimate variability in the experiment correctly.

As an example dataset, we use the gene level read counts from the pasilla data package. This dataset is from an experiment on Drosophila melanogaster cell cultures and investigated the effect of RNAi knock-down of the splicing factor pasilla [2]. The data are presented in the object called pasillaGenes. For a description how this data object was created from the raw data of Ref. [2], see the vingette included with the pasilla package.

The pasillaGenes object is of class CountDataSet, which is the data container used by DESeq. We load the needed packages and the data as follows.

```
> library( "DESeq" )
> library( "pasilla" )
> data( "pasillaGenes" )
```

pasillaGenes contains the counts and also metadata about the samples:

```
> head( counts(pasillaGenes) )
```

| | treated1fb | treated2fb | treated3fb | untreated1fb | untreated2fb |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| FBgn0000003 | 0 | 1 | 1 | 0 | 0 |
| FBgn0000008 | 118 | 139 | 77 | 89 | 142 |
| FBgn0000014 | 0 | 10 | 0 | 1 | 1 |
| FBgn0000015 | 0 | 0 | 0 | 0 | 0 |
| FBgn0000017 | 4852 | 4853 | 3710 | 4640 | 7754 |
| FBgn0000018 | 572 | 497 | 322 | 552 | 663 |

As you can see, the samples differ by experimental condition (untreated or treated, i.e., with pasilla knocked down) and by library type. To keep things simple, we will only look at the paired-end data for now. In Section 4, we will see how to deal with more than one factor.

For your own analysis, you will start form a count table, so we "unpack" the countDataSet object and build a new one "from scratch" to demonstrate how this is done.

```
> pairedSamples <- pData(pasillaGenes)$type == "paired-end"
> countsTable <- counts(pasillaGenes) [ , pairedSamples ]
> conds <- pData(pasillaGenes)$condition[ pairedSamples ]
```

Now, we have a count table, as described above, of integer count data. For your own data, use R's read.table or read.csv function to read your count data from a text file.

We also need a description of the samples, which is here simply a factor:

```
> conds
```

[1] treated treated untreated untreated Levels: treated untreated

For your own data, create such a factor simply with

```
> #not run
> conds <- factor( c( "treated", "treated", "untreated", "untreated" ) )
```

We can now instantiate a CountDataSet, which is the central data structure in the DESeq package:

```
> cds <- newCountDataSet( countsTable, conds )
```

The CountDataSet class is derived from Biobase's eSet class and so shares all features of this standard Bioconductor class. Furthermore, accessors are provided for its data slots ${ }^{2}$ For example, the counts can be accessed with the counts function.

[^0]```
> head(counts(cds))
\begin{tabular}{lrrrr}
& treated2fb & treated3fb & untreated3fb & untreated4fb \\
FBgn00000003 & 1 & 1 & 0 & 0 \\
FBgn0000008 & 139 & 77 & 84 & 76 \\
FBgn0000014 & 10 & 0 & 0 & 0 \\
FBgn0000015 & 0 & 0 & 1 & 2 \\
FBgn0000017 & 4853 & 3710 & 4026 & 3425 \\
FBgn0000018 & 497 & 322 & 272 & 321
\end{tabular}
```

As first processing step, we need to estimate the effective library size. This information is called the "size factors" vector, as the package only needs to know the relative library sizes. So, if the counts of non-differentially expressed genes in one sample are, on average, twice as high as in another, the size factor for the first sample should be twice as large as the one for the other sample. The function estimateSizeFactors estimates the size factors from the count data. (See the man page of estimateSizeFactorsForMatrix for technical details on the calculation.)

```
> cds <- estimateSizeFactors(cds)
> sizeFactors(cds)
 treated2fb treated3fb untreated3fb untreated4fb
\begin{tabular}{llll}
1.297 & 1.042 & 0.819 & 0.911
\end{tabular}
```

If we divide each column of the count table by the size factor for this column, the count values are brought to a common scale, making them comparable. When called with normalized=TRUE, the counts accessor function performs this calculation. This is useful, e.g., for visualization.

|  | treated2fb | treated3fb | untreated3fb | untreated 4 fb |
| :---: | :---: | :---: | :---: | :---: |
| FBgn0000003 | 0.771 | 0.96 | 0.00 | 0.0 |
| FBgn0000008 | 107.176 | 73.91 | 102.62 | 83.4 |
| FBgn0000014 | 7.710 | 0.00 | 0.00 | 0.0 |
| FBgn0000015 | 0.000 | 0.00 | 1.22 | 2.2 |
| FBgn0000017 | 3741.902 | 3561.30 | 4918.38 | 3760.7 |
| FBgn0000018 | 383.212 | 309.09 | 332.29 | 352.5 |

## 2 Variance estimation

The inference in DESeq relies on an estimation of the typical relationship between the data's variance and their mean, or, equivalently, between the data's dispersion and their mean.

The dispersion can be understood as the square of the coefficient of biological variation. So, if a gene's expression typically differs from replicate to replicate sample by $20 \%$, this gene's dispersion is $.20^{2}=.04$. Note that the variance seen between counts is the sum of two components: the sample-to-sample variation just mentioned, and the uncertainty in measuring a concentration by counting reads. The latter, known as shot noise or Poisson noise, is the dominating noise source for lowly expressed genes. The sum of both, shot noise and dispersion, is considered in the differential expression inference.

Hence, the variance $v$ of count values is modelled as

$$
v=s \mu+\alpha s^{2} \mu^{2}
$$

where $\mu$ is the expected normalized count value (estimated by the average normalized count value), $s$ is the size factor for the sample under consideration, and $\alpha$ is the dispersion value for the gene under consideration.

To estimate the dispersions, use this command.

```
> cds <- estimateDispersions(cds)
```

We could now proceed straight to the testing for differetial expression in Section 3. However, it is prudent to check the dispersion estimates and to make sure that the data quality is as expected.

The function estimateDispersions performs three steps. First, it estimates, for each gene and each (replicated) condition, a dispersion value, then, it fits, for each condition, a curve through the estimates. Finally, it assigns to each gene a dispersion value, using either the estimated or the fitted value. To allow the user to inspect the intermediate steps, a "fit info" object is stored for each condition:

```
> ls(cds@fitInfo)
[1] "treated" "untreated"
```

Each of the objects in the environment cds@fitInfo contains the empirical dispersion values for each gene, the curve fitted through the dispersions, and the fitted values that will be used in the test.

```
> str(cds@fitInfo[["untreated"]])
List of 4
 $ perGeneDispEsts: num [1:14470] NaN 0.00876 NaN -0.51617 0.03532 ...
 $ dispFunc :function (q)
 ..- attr(*, "coefficients")= Named num [1:2] 0.00846 2.97837
 - attr(*, "names")= chr [1:2] "asymptDisp" "extraPois"
 ..- attr(*, "fitType")= chr "parametric"
 $ fittedDispEsts : Named num [1:14470] 6.891 0.0409 1.5536 3.4943 0.0092 ...
 ..- attr (*, "names")= chr [1:14470] "FBgn0000003" "FBgn0000008" "FBgn0000014" "FBgn0000015"
 $ df : num 1
```

To visualize these, we plot the per-gene estimates against the normalized mean expressions per gene, and then overlay the fitted curve in red. The following function does this.

```
> plotDispEsts <- function(cds, cond)
+ {
+ plot(
+ rowMeans(counts(cds, normalized=TRUE)),
+ cds@fitInfo[[cond]]$perGeneDispEsts,
+ pch = '.', log="xy")
+ xg <- 10^seq(-.5, 5, length.out=300)
+ lines(xg, cds@fitInfo[[cond]]$dispFun(xg), col="red")
+}
```

We call it for both conditions (Fig. 1)


Figure 1: Empirical (black dots) and fitted (red lines) dispersion values plotted against mean expression strength; left: for condition "untreated", right: for condition "treated".

```
> par(mfrow=c(1,2))
> plotDispEsts(cds, "untreated")
> plotDispEsts(cds, "treated")
```

The plot in Figure 1 is doubly logarithmic; this may be helpful or misleading, and it is worth experimenting with other plotting styles.

As we estimated the dispersion from only two samples, we should expect the estimates to scatter with quite some sampling variance around their true values. Hence, we DESeq should not use the per-gene estimates directly in the test, because using too low dispersion values leads to false positives. Many of the values below the red line are likely to be underestimates of the true dispersions, and hence, it is prudent to instead rather use the fitted value. On the othe hand, not all of he values above the red line are overestimations, and hence, the conservative choice is to keep them instead of replacing them with their fitted values. If you do not like this default behaviour, you can change it with the option sharingMode of estimateDispersions. Note that DESeq orginally (as described in the DESeq paper [1]) only used the fitted values (sharingMode="fitonly"). The current default (sharingMode="maximum") is more conservative.

Another difference of the current DESeq version to the original method described in the paper is the way how the mean-dispersion relation is fitted. By default, estimateDispersion now performs a parametric fit: Using a gamma-family GLM, two coefficients $\alpha_{0}, \alpha_{1}$ are found to parametrize the fit as $\alpha=\alpha_{0}+\alpha_{1} / \mu$. (The values of the two coefficients can be found in the fitInfo object, as attribute coefficients to dispFunc.) For some data sets, the parametric fit may give bad results, in which case one should try a local fit (the method described in the paper), which is available via the option fitType="local" to estimateDispersions.

In any case, the dispersion values which finally should be used by the subsequent testing are stored in the feature data slot of cds:

```
> head(fData(cds))
```

|  | disp_treated | disp_untreated |
| :--- | ---: | ---: |
| FBgn0000003 | 6.3725 | 6.8910 |
| FBgn0000008 | 0.0579 | 0.0409 |
| FBgn0000014 | 1.7755 | 1.5536 |
| FBgn0000015 | 3.2328 | 3.4943 |
| FBgn0000017 | 0.0113 | 0.0353 |
| FBgn0000018 | 0.0204 | 0.0171 |

You can verify that disp_untreated indeed contains the maximum of the two value vectors we looked at before, namely

```
> str(cds@fitInfo[["untreated"]])
List of 4
 $ perGeneDispEsts: num [1:14470] NaN 0.00876 NaN -0.51617 0.03532 ...
 $ dispFunc :function (q)
 ..- attr(*, "coefficients")= Named num [1:2] 0.00846 2.97837
 - attr(*, "names")= chr [1:2] "asymptDisp" "extraPois"
 ..- attr(*, "fitType")= chr "parametric"
 $ fittedDispEsts : Named num [1:14470] 6.891 0.0409 1.5536 3.4943 0.0092 ...
 ..- attr(*, "names")= chr [1:14470] "FBgn0000003" "FBgn0000008" "FBgn0000014" "FBgn0000015" ..
 $ df
 : num 1
```

Advanced users who want to fiddle with the dispersion estimation can change the values in fData(cds) prior to calling the testing function.

## 3 Inference: Calling differential expression

### 3.1 Standard comparison between two experimental conditions

Having estimated the dispersion for each gene, it is now straight-forward to look for differentially expressed genes. To contrast two conditions, e.g., to see whether there is differential expression between conditions "untreated" and "treated", we simply call the function nbinomTest. It performs the tests as described in the paper and returns a data frame with the $p$ values and other useful information.

```
> res <- nbinomTest(cds, "untreated", "treated")
> head(res)
\begin{tabular}{llrrrrrr}
& id baseMean & baseMeanA & baseMeanB & foldChange & log2FoldChange & pval \\
1 & FBgn0000003 & 0.433 & 0.00 & 0.865 & Inf & Inf & 0.896 \\
2 FBgn000000 & 91.789 & 93.03 & 90.545 & 0.973 & -0.0391 & 1.000 \\
3 FBgn0000014 & 1.928 & 0.00 & 3.855 & Inf & Inf & 0.196 \\
4 FBgn0000015 & 0.854 & 1.71 & 0.000 & 0.000 & - Inf & 0.511 \\
5 FBgn0000017 & 3995.560 & 4339.52 & 3651.603 & 0.841 & -0.2490 & 0.204 \\
6 FBgn0000018 & 344.264 & 342.37 & 346.153 & 1.011 & 0.0158 & 0.908 \\
padj & & & & &
\end{tabular}
```



Figure 2: Plot of normalised mean versus $\log _{2}$ fold change (this plot is sometimes also called the "MA-plot") for the contrast "untreated" versus "treated".
41.000
50.979
61.000

For each gene, we get its mean expression level (at the base scale) as a joint estimate from both conditions, and estimated separately for each condition, the fold change from the first to the second condition, the logarithm (to basis 2) of the fold change, and the $p$ value for the statistical significance of this change. The padj column contains the $p$ values, adjusted for multiple testing with the Benjamini-Hochberg procedure (see the R function p.adjust), which controls false discovery rate (FDR).

Let us first plot the $\log _{2}$ fold changes against the base means, colouring in red those genes that are significant at $10 \%$ FDR.

```
> plotDE <- function(res)
+ plot(
+ res$baseMean,
+ res$log2FoldChange,
+ log="x", pch=20, cex=.3,
+ col = ifelse(res$padj < .1, "red", "black"))
> plotDE(res)
```

See Figure 2 for the plot. As we will use this plot more often, we have stored its code in a function.


Figure 3: Histogram of $p$-values from the call to nbinomTest.

It is also instructive to look at the histogram of $p$ values (Figure 3). The enrichment of low po values stems from the differentially expressed genes, while those not differebtially expressed are spread uniformly over the range from zero to one (except for the $p$ values from genes with very low counts, which take discrete values and so give rise to higher bins at the right and in the middle.)

```
> hist(res$pval, breaks=100, col="skyblue", border="slateblue", main="")
```

We can filter for significant genes, according to some chosen threshold for the false dicovery rate (FDR),

```
> resSig <- res[res$padj < 0.1,]
```

and list, e.g., the most significantly differentially expressed genes:
> head( resSig[ order(resSig\$pval), ] )

| id baseMean |  |  |  |  |  |  |  | baseMeanA | baseMeanB | foldChange | log2FoldChange |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 2605 | FBgn0026562 | 43620 | 73482 | 13758.5 | 0.1872 | -2.42 |  |  |  |  |  |
| 3163 | FBgn0029167 | 3435 | 5680 | 1190.0 | 0.2095 | -2.25 |  |  |  |  |  |
| 9696 | FBgn0039155 | 697 | 1335 | 59.4 | 0.0445 | -4.49 |  |  |  |  |  |
| 6855 | FBgn0035085 | 547 | 930 | 164.3 | 0.1766 | -2.50 |  |  |  |  |  |
| 3379 | FBgn0029896 | 409 | 699 | 119.2 | 0.1705 | -2.55 |  |  |  |  |  |
| 6724 | FBgn0034897 | 960 | 1556 | 363.7 | 0.2337 | -2.10 |  |  |  |  |  |


|  | pval | padj |
| ---: | ---: | ---: |
| 2605 | $1.44 \mathrm{e}-50$ | $1.66 \mathrm{e}-46$ |
| 3163 | $8.03 \mathrm{e}-44$ | $4.61 \mathrm{e}-40$ |
| 9696 | $6.62 \mathrm{e}-38$ | $2.54 \mathrm{e}-34$ |
| 6855 | $1.87 \mathrm{e}-34$ | $5.36 \mathrm{e}-31$ |
| 3379 | $3.90 \mathrm{e}-31$ | $8.95 \mathrm{e}-28$ |
| 6724 | $6.47 \mathrm{e}-31$ | $1.24 \mathrm{e}-27$ |

We may also want to look at the most strongly down-regulated of the significant genes,

```
> head(resSig[order(resSig$foldChange, -resSig$baseMean),])
 id baseMean baseMeanA baseMeanB foldChange log2FoldChange
\begin{tabular}{llrrrrr}
12485 & FBgn0053498 & 17.7 & 35.4 & 0.00 & 0.0000 & \(-\operatorname{Inf}\) \\
13353 & FBgn0085359 & 39.8 & 77.6 & 2.02 & 0.0260 & -5.26 \\
2263 & FBgn0024288 & 51.4 & 98.6 & 4.23 & 0.0429 & -4.54 \\
9696 & FBgn0039155 & 697.2 & 1335.0 & 59.42 & 0.0445 & -4.49 \\
10162 & FBgn0039827 & 296.3 & 562.7 & 29.79 & 0.0529 & -4.24 \\
6408 & FBgn0034434 & 139.2 & 263.9 & 14.61 & 0.0554 & -4.17
\end{tabular}
 pval padj
12485 1.11e-08 1.69e-06
13353 9.44e-12 2.78e-09
2263 3.17e-16 1.58e-13
9696 6.62e-38 2.54e-34
10162 5.29e-14 2.17e-11
6408 7.47e-15 3.43e-12
```

or at the most strongly up-regulated ones:

| id baseMean |  |  | baseMeanA | baseMeanB | foldChange | log2FoldChange |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10712 | FBgn0042173 | 18.9 | 0.611 | 37.1 | 60.75 | 5.92 |
| 5955 | FBgn0033764 | 79.1 | 12.820 | 145.3 | 11.34 | 3.50 |
| 8385 | FBgn0037290 | 75.5 | 14.405 | 136.5 | 9.48 | 3.24 |
| 12889 | FBgn0063667 | 14.4 | 2.807 | 26.1 | 9.29 | 3.22 |
| 6926 | FBgn0035189 | 236.5 | 53.112 | 420.0 | 7.91 | 2.98 |
| 5505 | FBgn0033065 | 31.8 | 7.446 | 56.2 | 7.55 | 2.92 |
|  | pval | padj |  |  |  |  |
| 10712 | $1.32 \mathrm{e}-061.2$ | 3e-04 |  |  |  |  |
| 5955 | $3.83 \mathrm{e}-161.8$ | $3 \mathrm{e}-13$ |  |  |  |  |
| 8385 | $5.93 \mathrm{e}-142.3$ | $5 \mathrm{e}-11$ |  |  |  |  |
| 12889 | $1.06 \mathrm{e}-033.3$ | 4e-02 |  |  |  |  |
| 6926 | $2.39 \mathrm{e}-191.9$ | $6 \mathrm{e}-16$ |  |  |  |  |
| 5505 | $2.77 \mathrm{e}-062.2$ | 4e-04 |  |  |  |  |

To save the output to a file, use the R functions write.table and write.csv. (The latter is useful if you want to load the table in a spreadsheet program such as Excel.)

```
> #not run
> write.table(res, file="results.txt")
```



Figure 4: Plot of the log2 fold change between the untreated replicates versus average expression strength.

Note in Fig. 2 how the power to detect significant differential expression depends on the expression strength. For weakly expressed genes, stronger changes are required for the gene to be called significantly expressed. To understand the reason for this let, us compare the normalized counts between two replicate samples, here taking the two untreated samples as an example:

```
> ncu <- counts(cds, normalized=TRUE)[, conditions(cds)=="untreated"]
```

ncu is now a matrix with two columns.
> plot( rowMeans(ncu), log2( ncu[,2] / ncu[,1] ), pch=".", log="x" )
As one can see in Figure 4 the log fold changes between replicates are stronger for lowly expressed genes than for highly expressed ones. We ought to conclude that a gene's expression is influenced by the treatment only if the change between treated and untreated samples is stronger than what we see between replicates, and hence, the dividing line between red and black in Figure 2 mimics the shape seen in Figure 4

### 3.2 Working partially without replicates

If you have replicates for one condition but not for the other, you can still proceed as before. As explained in the manual page of the estimateDispersions function, in such cases, the dispersion estimates for the conditions without replicates will simply be assigned the maximum of the dispersion estimates of those conditions that do have replicates. Whether this is appropriate,


Figure 5: MvA plot for the contrast "treated" vs. "untreated", using two treated and only one untreated sample.
needs to be checked, of course, but often, it may seem reasonable to assume that the data's dispersion in different conditions is not that different.

To demonstrate, we subset our data object to only three samples:

```
> cdsTTU <- cds[, 1:3]
> pData(cdsTTU)
```

|  | sizeFactor condition |  |
| :--- | ---: | ---: |
| treated2fb | 1.297 | treated |
| treated3fb | 1.042 | treated |
| untreated3fb | 0.819 | untreated |

Now, we do the analysis as before.

```
> cdsTTU <- estimateSizeFactors(cdsTTU)
> cdsTTU <- estimateDispersions(cdsTTU)
> resTTU <- nbinomTest(cdsTTU, "untreated", "treated")
```

We produce the analogous plot as before, again with

```
> plotDE(resTTU)
```

Figure 5 shows the same symmetry in up- and down-regulation as in Fig. 2 but a certain asymmetry in the boundary line for significance. This has an easy explanation: low counts suffer from proportionally stronger shot noise than high counts, and since there is only one "untreated" sample versus two "treated" ones, a stronger downward fold-change is required to be called significant than for the upward direction.

### 3.3 Working without any replicates

Proper replicates are essential to interpret a biological experiment. After all, if one compares two conditions and finds a difference, how else can one know that this difference is due to the different conditions and would not have arisen between replicates, as well, just due to experimental or biological noise? Hence, any attempt to work without any replicates will lead to conclusions of very limited reliability.

Nevertheless, such experiments are sometimes undertaken, and the DESeq package can deal with them, even though the soundness of the results may depend much on the circumstances.

Our primary assumption is still that the mean is a good predictor for the dispersion. Once we accept this assumption, we may argue as follows: Given two samples from different conditions and a number of genes with comparable expression levels, of which we expect only a minority to be influenced by the condition, we may take the dispersion estimated from comparing their counts across conditions as ersatz for a proper estimate of the variance across replicates. After all, we assume most genes to behave the same within replicates as across conditions, and hence, the estimated variance should not be affected too much by the influence of the hopefully few differentially expressed genes. Furthermore, the differentially expressed genes will only cause the dispersion estimate to be too high, so that the test will err to the side of being too conservative.

We shall now see how well this works for our example data. We reduce our count data set to just two columns, one "untreated" and one "treated" sample:

```
> cds2 <- cds[,c("untreated3fb", "treated3fb")]
```

Now, without any replicates at all, the estimateDispersions function will refuse to proceed unless we instruct it to ignore the condition labels and estimate the variance by treating all samples as if they were replicates of the same condition:

```
> cds2 <- estimateDispersions(cds2, method="blind")
```

Now, we can attempt to find differential expression:

```
> res2 <- nbinomTest(cds2, "untreated", "treated")
```

Unsurprisingly, we find much fewer hits, as can be seen from the plot (Fig. 6)

```
> plotDE(res2)
```

and from this table, tallying the number of significant hits in our previous and our new, restricted analysis:

```
> addmargins(table(res_sig = res$padj < .1, res2_sig = res2$padj < . 1))
```

| res2_sig |  |  |
| :--- | ---: | ---: |
| res_sig | FALSE | Sum |
| FALSE | 10372 | 10372 |
| TRUE | 490 | 490 |
| Sum | 10862 | 10862 |



Figure 6: MvA plot, from a test using no replicates.

## 4 Multi-factor designs

Let us return to the full pasilla data set, which we got as pasillaGenes from the pasilla package. Due to the usage of both single-end and paired-end libraries, it has a design with two factors, condition (or treatment) and library type:

```
> design <- pData(pasillaGenes)[, c("condition","type")]
> design
 condition type
treated1fb treated single-read
treated2fb treated paired-end
treated3fb treated paired-end
untreated1fb untreated single-read
untreated2fb untreated single-read
untreated3fb untreated paired-end
untreated4fb untreated paired-end
```

When creating a count data set with multiple factors, just pass a data frame instead of the condition factor:

```
> fullCountsTable <- counts(pasillaGenes)
> cdsFull <- newCountDataSet(fullCountsTable, design)
```



Figure 7: Estimated (black) pooled dispersion values for all seven samples, with regression curve (red).
cdsFull is now essentially the same object as pasillaGenes, we have only recreated it for demonstration.

As before, we estimate the size factors and then the dispersions. For the latter, we specify the method "pooled". Then, only one dispersion is computed for each gene, an average over all cells (weighted by the number of samples for each cells), where the term cell denotes any of the four combinations of factor levels of the design.

```
> cdsFull <- estimateSizeFactors(cdsFull)
> cdsFull <- estimateDispersions(cdsFull, method="pooled")
```

We check the fit (Fig. 7):

```
> plotDispEsts(cdsFull, "pooled")
```

For inference, we now specify two models by formulas. The full model regresses the genes' expression on both the library type and the treatment condition, the reduced model regresses them only on the library type. For each gene, we fit generalized linear models (GLMs) according to the two models, and then compare them in order to infer whether the additional specification of the treatment improves the fit and hence, whether the treatment has significant effect.

```
> fit1 <- fitNbinomGLMs(cdsFull, count ~ type + condition)
> fit0 <- fitNbinomGLMs(cdsFull, count ~ type)
```

These commands take a while to execute. Also, they may produce a few warnings, informing you that the GLM fit failed to converge (and the results from these genes should be interpreted with care). The "fit" objects are data frames with three columns:

```
> str(fit1)
'data.frame': 14470 obs. of 5 variables:
 $ (Intercept) : num -0.00815 6.74301 1.55925 -33.63515 12.03815 ...
 $ typesingle-read : num -34.1079 -0.1665 1.0097 -34.9124 -0.0402 ...
 $ conditionuntreated: num -34.5327 -0.0336 -3.5819 34.6179 0.2508 ...
 $ deviance : num 0.00349 2.70161 3.40697 0.04691 2.61974 ...
 $ converged : logi TRUE TRUE FALSE TRUE TRUE TRUE ...
 - attr(*, "df.residual")= num 4
```

        To perform the test, we call
    ```
> pvalsGLM <- nbinomGLMTest(fit1, fitO)
> padjGLM <- p.adjust(pvalsGLM, method="BH")
```

The function nbinomTestGLM returned simply a vector of $p$ values which we handed to the standard R function p .adjust to adjust for multiple testing using the Benjamini-Hochberg ( BH ) method.

Let's compare with the result from the four-samples test:

```
> tab = table("paired end only" = res$padj < .1, "all samples" = padjGLM < .1)
> addmargins(tab)
```

    all samples
    paired end only FALSE TRUE Sum
FALSE 1059840211000
TRUE $54 \quad 436490$
Sum 1065283811490

We see that the analyses find 436 genes in common, while 402 were only found in the analysis using all samples and 54 were specific for the paired end only analysis. A more informative comparison might be a scatter plot of $p$ values:

```
> bottom = function(x, theta=1e-12) pmax(x, theta)
> plot(bottom(res$pval), bottom(pvalsGLM), log="xy", pch=20, cex=.3)
> abline(a=0, b=1, col="blue")
```

The result is shown in Fig. 8
Now, we can extract the significant genes from the vector padjGLM as before. To see the corresponding fold changes, we have a closer look at the object fit1

```
> head(fit1)
 (Intercept) typesingle-read conditionuntreated deviance converged
\begin{tabular}{lrrrrr}
FBgn0000003 & -0.00815 & -34.1079 & \(-3.45 \mathrm{e}+01\) & 0.00349 & TRUE \\
FBgn0000008 & 6.74301 & -0.1665 & \(-3.36 \mathrm{e}-02\) & 2.70161 & TRUF
\end{tabular}
```



Figure 8: Comparison of $p$ values (unadjusted) from the test using only the four paired-end samples and the test using all seven samples. We can see that the latter tend to be smaller, as expected from the higher power of the test with all samples.

FBgn0000014	1.55925	1.0097	$-3.58 \mathrm{e}+00$	3.40697	FALSE
FBgn0000015	-33.63515	-34.9124	$3.46 \mathrm{e}+01$	0.04691	TRUE
FBgn0000017	12.03815	-0.0402	$2.51 \mathrm{e}-01$	2.61974	TRUE
FBgn0000018	8.63370	0.2949	$-3.52 \mathrm{e}-04$	1.97766	TRUE

The first three columns show the fitted coefficients, converted to a logarithm base 2 scale. The $\log 2$ fold change due to the condition is shown in the third column. As indicated by the column name, it is the effect of "untreated", i.e., the log ratio of "untreated" versus "treated". (This is unfortunately the other way round as before, due to the peculiarities of contrast coding.) Note that the library type also had noticeable influence on the expression, and hence would have increased the dispersion estimates (and so reduced power) if we had not fitted an effect for it.

The column deviance is the deviance of the fit. (Comparing the deviances with a $\chi^{2}$ likelihood ratio test is how nbinomGLMTest calculates the $p$ values.) The last column, converged, indicates whether the calculation of coefficients and deviance has fully converged. (If it is false too often, you can try to change the GLM control parameters, as explained in the help page to fitNbinomGLMs.)

Finally, we show that taking the library type into account was important to have good detection power by doing the analysis again using the standard workflow, as outlined earlier, and without informing DESeq of the library types:

```
> cdsFullB <- newCountDataSet(fullCountsTable, design$condition)
> cdsFullB <- estimateSizeFactors(cdsFullB)
> cdsFullB <- estimateDispersions(cdsFullB, method="pooled",
+ sharingMode="maximum")
> resFullB <- nbinomTest(cdsFullB, "untreated", "treated")
> table("all-samples-simple" = resFullB$padj < 0.1,
+ "all-samples-GLM" = padjGLM < 0.1)
 all-samples-GLM
all-samples-simple FALSE TRUE
 FALSE 11358 281
 TRUE 15 557
```


## 5 Moderated fold change estimates and applications to sample clustering and visualisation

In Section 3 we have seen how to use $D E S e q$ for calling differentially expressed genes. For each gene, $D E S e q$ reports a (logarithm base 2) fold change estimate and a $p$ value, as shown for instance in the dataframe res in the beginning of that section. When the involved counts are small, the (logarithmic) fold-change estimate can be highly variable, and can even be infinite.

For some purposes, such as the clustering of samples (or genes) according to their overall profiles, or for visualisation of the data, the (logarithmic) fold changes may thus not be useful: the random variability associated with fold changes computed from ratios between low counts might drown informative, systematic signal in other parts of the data. We would like to moderate the fold change estimates in some way, so that they are more amenable to plotting or clustering. One approach to do so uses so-called pseudocounts: instead of the log-ratio $\log _{2}\left(n_{A} / n_{B}\right)$ between the counts $n_{A}, n_{B}$ in two conditions $A$ and $B$ consider $\log _{2}\left(\left(n_{A}+c\right) /\left(n_{B}+c\right)\right)$, where $c$ is a small positive number, e. g. $c=0.5$ or $c=1$. For small values of either $n_{A}$ or $n_{B}$, or both, the value of this term is shifted towards 0 compared to the direct $\log$-ratio $\log _{2}\left(n_{A} / n_{B}\right)$. When $n_{A}$ and $n_{B}$ are both large, the direct log-ratio and the log-ratio with pseudocounts (asymptotically) agree. This approach is simple and intuitive, but it requires making a choice for what value to use for $c$, and that may not be obvious.

A variant of this approach is to look for a mathematical function of $n_{A}$ and $n_{B}$ that is like $\log _{2}\left(n_{A} / n_{B}\right)$ when $n_{A}$ and $n_{B}$ are large enough, but still behaves gracefully when they become small. If we interpret graceful as having the same variance throughout, then we arrive at variance stabilising transformations (VST) [1]. An advantage is that the parameters of this function are chosen automatically based on the variability of the data, and no ad hoc choice of $c$, as above, is necessary.

```
> cdsBlind <- estimateDispersions(cds, method="blind")
> vsd <- getVarianceStabilizedData(cdsBlind)
```

The data are now on a logarithm-like scale, and we can compute moderated log fold changes.

```
> mod_lfc <- (rowMeans(vsd[, conditions(cds)=="treated", drop=FALSE]) -
+ rowMeans(vsd[, conditions(cds)=="untreated", drop=FALSE]))
```



Figure 9: Scatterplot of direct (lfc) versus moderated log-ratios (mod_lfc). The moderation criterion used is variance stabilisation. The red points correspond to values that were infinite in lfc and were abitrarily set to $\pm 10$ for the purpose of plotting. These values vary in a finite range (as shown in the plot) in mod_lfc.

Now let us compare these to the original $\left(\log _{2}\right)$ fold changes. First we find that many of the latter are infinite (resulting from division of a finite value by 0 ) or not a number ( NaN , resulting from division of 0 by 0 ).

```
> lfc <- res$log2FoldChange
> finite <- is.finite(lfc)
> table(as.character(lfc[!finite]), useNA="always")
-Inf Inf NaN <NA>
 541 640 2980 0
```

For plotting (Figure 9), we replace the infinite values by an arbitrary fixed large number:

```
> largeNumber <- 10
> lfc <- ifelse(finite, lfc, sign(lfc) * largeNumber)
> plot(lfc, mod_lfc, pch=20, cex=.3,
+ col = ifelse(finite, "#80808040", "red"))
> abline(a=0, b=1, col="#40404040")
```



Figure 10: Heatmaps showing the expression data of the top 40 differentially expressed genes. Left: clustering of the variance stabilisation transformed data (vsd), right: clustering of the original count data (countscds). The right plot is dominated by a small number of data points with large values.

These data are now approximately homoscedastic and hence suitable as input to a distance calculation. This can be useful, e.g., to visualise the expression data of, say, the top 40 differentially expressed genes.

```
> select <- order(res$pval)[1:40]
> colors <- colorRampPalette(c("white","darkblue"))(100)
> heatmap(vsd[select,],
+ col = colors, scale = "none")
```

For comparison, let us also try the same with the untransformed counts.

```
> heatmap(counts(cds)[select,],
+ col = colors, scale = "none")
```

The result is shown in Figure 10 .
We note that the heatmap function that we have used here is rather basic, and that better options exist, for instance the heatmap. 2 function from the package gplots or the manual page for dendrogramGrob in the package latticeExtra.

Another use of variance stabilized data is sample clustering. Here, we apply the dist function to the transpose of the vsd matrix to get sample-to-sample distances. We demonstrate this with the full data set with all seven samples.


Figure 11: Heatmap showing the Euclidean distances between the samples as calculated from the variance-stabilising transformation of the count data.

```
> cdsFullBlind <- estimateDispersions(cdsFull, method = "blind")
> vsdFull <- getVarianceStabilizedData(cdsFullBlind)
> dists <- dist(t(vsdFull))
```

A heatmap of this dstance matrix now shows us, which samples are similar (Figure 11):

```
> heatmap(as.matrix(dists),
+ symm=TRUE, scale="none", margins=c(10,10),
+ col = colorRampPalette(c("darkblue","white"))(100),
+ labRow = paste(pData(cdsFullBlind)$condition, pData(cdsFullBlind)$type))
```

The clustering correctly reflects our experimental design, i.e., samples are more similar when they have the same treatment or the same library type. (To make this conclusion, it was important to re-estimate e dispersion with mode "blind" (in the calculation for cdsFullBlind above, as only then, the variance stabilizing transformation is not informed about the design and hence not biased towards a result supporting it.) Such an analysis is useful for quality control, and (even though we finish our vignette with it), it may be useful to this first in any analysis.

## 6 Further reading

For more information on the statistical method, see our paper [1]. For more information on how to customize the $D E S e q$ work flow, see the package help pages, especially the help page for estimateDispersions.

## 7 Session Info

```
> sessionInfo()
R Under development (unstable) (2011-07-06 r56301)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
 [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
 [7] LC_PAPER=C LC_NAME=C
 [9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] pasilla_0.2.4 DESeq_1.5.23 locfit_1.5-6 lattice_0.19-30
[5] akima_0.5-4 Biobase_2.13.7
loaded via a namespace (and not attached):
 [1] AnnotationDbi_1.15.9 DBI_0.2-5 RColorBrewer_1.0-5
 [4] RSQLite_0.9-4 annotate_1.31.0 genefilter_1.35.0
 [7] geneplotter_1.31.0 grid_2.14.0 splines_2.14.0
[10] survival_2.36-9 tools_2.14.0 xtable_1.5-6
```


## References

[1] Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data. Genome Biology, 11:R106, 2010.
[2] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R. Graveley. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Research, pages 193-202, 2011.


[^0]:    ${ }^{2}$ In fact, the objects pasillaGenes and cds from the pasilla are also of class CountDataSet; here we re-created cds from elementary data types, a matrix and a factor, for pedagogic effect.

