Single Tumor-Normal Pair Parent-Specific Copy Number Analysis

Henrik Bengtsson

Department of Epidemiology & Biostatistics, UCSF

with: Pierre Neuvial

Adam Olshen

Richard Olshen

Venkatraman Seshan

Terry Speed

Paul Spellman

Thanks to: TCGA, NCI, NHI & BioC2011

Slides at http://aroma-project.org/

Paired PSCBS

Parent-specific copy numbers from a single tumor-normal pair of SNP arrays

- 1. Tumor-normal pair
- 2. Genotype normal
- 3. Normalize tumor using normal
- 4. Segment tumor CNs in two steps
- 5. Estimate PSCNs within segments
- 6. Call segments

 H Bengtsson, P Neuvial, TP Speed, TumorBoost: Normalization of allele-specific tumor copy numbers from one single tumor-normal pair of genotyping microarrays, BMC Bioinformatics 2010.
AB Olshen, H Bengtsson, P Neuvial, PT Spellman, RA Olshen, VE Seshan, Parent-specific copy number in paired tumor-normal studies using circular binary segmentation, Bioinformatics 2011.

Genotypes are observed at single loci

Single nucleotide polymorphism

10-20 million known SNPs

Genotypes and total copy numbers reflect the parent-specific copy numbers

* Occam's razor: Minimal number of events has occurred.

SNP microarrays quantify total and allele-specific copy numbers

Chip Design

Sample DNA

Together the SNPs of a region indicate the parent-specific copy numbers

1 individual, many SNPs NORMAL (1,1)

Total CN: $C = C_A + C_B$

Total CNs and allele B fractions are easier to work with than ASCNs

> 1 individual, many SNPs, same 2 regions: NORMAL (1,1) GAIN (1,2)

Total CNs and BAFs reflect the underlying parent-specific CNs

Matched tumor-normals

- With a matched normal it is easier!

...because we can genotype the normal and find the heterozygous SNPs...

- Also, much greater SNRs

Heterozygous SNPs (not homozygous) are informative for PSCNs

1. **Genotypes (AA,AB,BB)** from BAFs of a matched normal

2a. Total CNs C = $C_A + C_B$

2b. **Tumor BAFs** $\beta = C_B / C$

3. Decrease in Heterozygosity $\rho = 2^* | \beta - 1/2 |$; hets only

Total CNs & DHs segmentation gives us PSCN regions and estimates

(i) Find change points

(ii) Estimate mean levels

It is hard to infer PSCNs reliably when signals are noisy

CalMaTe

Better allele-specific copy numbers in tumors without matched normals by borrowing across many samples

Features:

- Multiple (> 30) samples.
- Any SNP microarray platform.
- Bounded memory usage (< 1GB of RAM)

More: http://www.aroma-project.org/

M Ortiz-Estevez, A. Aramburu, H. Bengtsson, P. Neuvial, & A. Rubio. A calibration method to improve allele-specific copy number estimates from SNP microarrays (submitted). The noise is due to SNP-specific effects that we can estimate and remove

Example: (C_A, C_B) for <u>310 samples</u> per SNP: **Systematic effects...** ...are SNP specific!

Multi-sample model: (one per SNP) Fit affine transform across samples

Multi-sample method for each SNP separately:

Non-negative Matrix Factorization (NMF). Robustified against outliers (e.g. tumors). Special cases: Only one or two genotype groups.

Related methods/ideas:

- Illumina's "Cluster Regression"
- CRLMM CNs (*RLMM, ...)

• ••

Improved SNR of BAFs (and total CNs) when removing SNP-specific variation

TumorBoost

Better allele-specific copy numbers in tumors with matched normals

Requirements:

- Matched tumor-normal pairs.
- A single pair is enough.
- Any SNP microarray platform.
- Bounded memory usage (< 1GB of RAM)

More: http://www.aroma-project.org/

H. Bengtsson, P. Neuvial, T.P. Speed

TumorBoost: Normalization of allele-specific tumor copy numbers from one single tumor-normal pair of genotyping microarrays, BMC Bioinformatics, 2010.

Allele B fractions (BAFs): The bias is greater than the noise

> **Example**: (C_A, C_B) for <u>310 samples</u> per SNP. TCN: between 2 arrays. BAF: within array.

The tumor "should be" close to its normal

When we have only a single tumor-normal pair:

(i) Normal should be at e.g. (1,1) ...so lets move it there!(ii) Adjust the tumor in a "similar" direction.

The tumor "should be" close to the normal; - data strongly agree!

The SNP effect can be estimated & removed for each SNP independently!

Observed: Allele B fractions $\beta_N \in [0,1]$ $\beta_T \in [0,1]$

 $\label{eq:scaledonard} \begin{array}{l} \textbf{Genotype calls (AA,AB,BB):} \\ \beta_{\text{N,TRUE}} \in \{0,\,0.5,\,1\} \end{array}$

Estimate from normal: SNP effect $\delta = \beta_N - \beta_{N,TRUE}$

Remove from tumor: $\beta_{T,TBN} = \beta_T - \delta^*$

1. Estimate SNP effect in the normal and its genotypes

2. Remove SNP effect from the tumor

3. Repeat for all SNPs.

TumorBoost removes the SNP effects from the tumor (only)

Even with a single tumor-normal pair, we can greatly improve the SNR

TumorBoost => more distinct (C_A,C_B) - key for PSCN segmentation

Original:

TumorBoost:

- single-pair
- tumor-normals
- normal is not corrected

CalMaTe:

- multi-sample

TumorBoost and CalMaTe significantly improve power to detect change points

TumorBoost (single pair)

CalMaTe (multi-sample)

one change point

Paired PSCBS

Parent-specific copy numbers from a single tumor-normal pair of SNP arrays

- 1. Tumor-normal pair
- 2. Genotype normal
- 3. Normalize tumor using normal
- 4. CBS segment tumor: (a) TCN, then (b) DH
- 5. Estimate PSCNs within segments
- 6. Call segments

Total CNs & DHs segmentation gives us PSCN regions and estimates

(i) Find TCN change points, then extra DH ones(ii) Estimate mean levels

Calling allelic balance and LOH

Calling allelic balance:

- Null: $C_1 = C_2$ (equivalent to DH = 0)
- DH is estimated with bias near 0, so we need offset Δ_{AB} in test.
- Reject null if α :th percentile of bootstrap-estimated DH Δ_{AB} > 0.
- How do we choose Δ_{AB} ?

Calling LOH:

- Null: C₁ > 0 ("not in LOH")
- C_1 is estimated with bias due to background (e.g. normal contamination), so we need offset Δ_{LOH} in test.
- Reject null if $(1-\alpha)$:th percentile of bootstrap-estimated $C_1 \Delta_{LOH} < 0$.
- How do we choose Δ_{LOH} ?

PSCBS works with any SNP array - similar results on Affymetrix and Illumina

Illumina HumanHap550

Other methods exists e.g. Paired BAF segmentation

Paired BAF (Staaf et al., 2008) is a paired.

Algorithm:

- 1. Genotype normal sample
- 2. Drop homozygote SNPs
- 3. Segment "mirrored BAF" (like DH)
- 4. Estimate parent-specific copy numbers

Paired PSCBS performs very well compared to other PSCN methods

Assessment of calls:

- Staaf simulated data set.
- Known regions.
- Different amount of normal contamination.
- Keep FP rates at 0.0%.
- TP rate of calls.

Methods are available (www.aroma-project.org)

Preprocessing:

- Affymetrix: ASCRMAv2 (single-array)
- Illumina: <elsewhere>

Normalization of ASCNs:

Single tumor-normal pair: TumorBoost [aroma.light, aroma.cn]

[aroma.affymetrix]

[CalMaTe]

[PSCBS]

Multiple samples: CalMaTe

PSCN segmentation:

- Single tumor-normal pair: Paired PSCBS
- No matched normals: <we're working on it>

Everything is bounded in memory (< 1GB of RAM)

Conclusions

Paired PSCBS w/ TumorBoost:

- High quality tumor PSCNs
- Single tumor-normal pair
- No external references needed
- Any SNP microarray technology
- Algorithms is fast and bounded in memory

Future:

- Non-paired PSCBS
- Calibration of PSCN states (e.g. "purity" & "ploidy")