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Packages

Rsubread
- Read alignment
- Summarization by genomic features
- Exon discovery

limma
- Normal-based DE analysis
- Gene set analysis

edgeR
- Negative binomial-based DE analysis
- Detection of splice-variants*

goseq
- Gene ontology analysis adjusted for gene length 2

Reads to genes: a Bioconductor pipeline

Quality assessment 
quality scores, GC content

Quality assessment 
quality scores, GC content

Read mappingRead mapping

Sequencing reads (FASTQ)

SAM Files

Rsubread
(qrqc)

Rsubread

SummarizationSummarization

Differential 
expression
Differential 
expression

Read counts per feature 
(genes, transcripts, exons)

SAM Files

Rsubread
(GenomicFeatures)

edgeR
(BaySeq, DESeq)

DE genes, exons
Splice variants

Exon 
discovery

Exon 
discovery

Rsubread*

Rsubread maps reads to genome:
multi-seed and vote

No
mismatches

Wei Shi

Yang Liao

Repeats
threshold

Vote

Simulation Discovery of exons
and exon-junctions

junction location

read

Exon 1Exon 1 Exon 2Exon 2gene
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Exon-junction discovery

Brain

Activated lymph tumor

Mature lymph tumor

Immature lymphocyte

RACE PCR

Exon
junctions

RACE PCR

Refseq

Library of read counts

DNA 
sample

Read 1
Read 2
Read 3
Read 4
Read 5
R d 6

Short reads

Count by exon, 
or gene, or …
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M = total number of reads
λg = true proportion of gene g
yg = number of reads for gene g

≈ Poisson with E(yg) = M λg

Read 6
…

A small RNA-seq experiment

RNA from 
stem cells

RNA from 
mature cells

λ λ λ λ
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λg1
λg2

λg3 λg4

yg1
yg2 yg3 yg4

Genes g = 1, …, 30k

M1 M2
M3 M4

E(ygi) = μgi = Mi λgi
Reads Mi ≈ 20 million

log-linear models

log μgi = log λig + log Mgi

= xi
Tβg     + log Mgi

f ( li d)
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row of 
design 
matrix

vector of
log fold 
changes

(normalized) 
library size

(unknown)

Normalization

Scale normalization
- “Effective” library size

Nonlinear normalization

Robinson and Oshlack, 
Genome Biol 2010

Nonlinear normalization
- Quantile normalization

- Gene length

- GC content (of reads, of fragments)
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cqn
EDASeq

Counts show a quadratic
mean-variance relationship

var(ygi) = μgi + φg μgi
2
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CV2 of the “true” 
expression levels λgi

across replicates

Poisson 
variation

CV = coefficient of variation = sd/mean
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Biological coefficient of variation

Total CV2 = Technical CV2 + Biological CV2

From 
sequencing 

CV of “true” 
expression 
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q g
technology

p
level

zero for large 
counts

≈ constant

BCV = √φg

Real data show quadratic variances

Technical replicates Biological replicates
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Statistical properties of read counts

Properties
- Integer values (discrete)

- Mean-variance relationship

Di ti i h t h i l f bi l i l i ti- Distinguish technical from biological variation

Approaches
- log-counts as normal (limma)

- counts as negative binomial (edgeR)
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Limma approach

normalize libsize in advance or normalize zgi as 
for microarrays

2 2

count 0.5 0.5
log log

libsize 0.5 0.5
gi gi

gi gi
gi

y
z

M

   + +
= =   

   + +   

log-counts:
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for microarrays.

( ) T
gi gi i gE z xμ β= =

( ) 2var ( )gi gi gz s μ σ=

Linear modelling:

Smooth function of mean

{

Charity Law

Empirical Bayes with
abundance-dependent prior

17eBayes(fit, trend=TRUE); plotSA(fit)

Negative binomial approach

If λgi are gamma distributed, then

ygi ~ NegBin( μgi, φg)

Once the dispersions are estimated the log

18

Once the dispersions are estimated, the log-
linear models are generalized linear models

Mark Robinson Davis McCarthy Yunshun Chen
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Ensuring glm convergence

Iterative fitting of glms is computationally 
demanding, and standard glm code can 
diverge

Pseudo Newton Raphson strategy toPseudo Newton-Raphson strategy to 
reduce need for matrix decompositions

Line searches to prevent divergence

Highly vectorized code

Fit genewise glms in a few seconds
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Conditional inference
for the dispersions

Need to adjust for estimation of βg when 
forming likelihood for φg

For two-group comparison, can compute 
conditional distributions given row totalsconditional distributions given row totals 
and conduct exact inference

For more general designs, use Cox-Reid
adjusted profile likelihood to condition on 
estimator of βg

20

Performance of conditional 
estimators of dispersion
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Complexity of dispersion:
sharing information between genes

Separate gene-wise estimation of φg is 
impractical

Common dispersion (Robinson & Smyth 
2008)2008)

Trended dispersion (Anders & Huber 
2010)

Gene-wise by empirical Bayes shrinkage 
(Robinson & Smyth, 2007)
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Common dispersion likelihood

Assume same dispersion for all genes
φg = φ

Genewise conditional log-likelihood
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Genewise conditional log likelihood
ℓg(φ;yg)

Common-dispersion log-likelihood
ℓc(φ) = (1/G) ∑gℓg(φ;yg)

Maximized at φc

Empirical Bayes shrinkage
for the dispersion

Posterior = ℓg(φg) + α ℓc(φc)

Estimate φg by empirical posterior mode:

24

Genewise 
likelihood

Empirical prior 
distribution

Local weighting 
produces 
abundance 
dependent prior

Precision 
of prior
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Estimated dispersions (simulation)
Oral squamous cancer

Normal Tumour

Patient 8 N8 T8

Patient 33 N33 T33

Patient 51 N51 T51

Tuch et al,
PloS ONE 2010

Multidimensional 

26

BCV=40%

scaling plot using 
BCV distances

Genewise goodness of fit tests

Tagwise dispersion gives the best fit

Differential expression

1271 generally DE genes

Fit models of increasing complexity:

Patient

LRTs

28

g y g

184 genes specific 
to individual tumours

FDR < 0.05

Patient + Tissue Source

Patient * Tissue Source

LRTs

LRTs

Multidimensional scaling plots
with BCV as distance

Outlier

29

Finding technical effects
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Empirical Bayes for the fold changes
3
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Predicting PCR fold changes
from SEQC RNA-Seq data

31

2
.6

2
.8

3
.0

Prior weight

M
e

an
 S

q
ua

re
d 

E
rr

o

+half 0.07 0.13 0.2 0.26 0.39 0.53 1.05 1.58 2.63

Accuracy

ShrinkageBelinda Phipson

Screening for splice-variants

Exon level summaries

Estimate exon-wise dispersions

Test exon x group interaction for each 
gene

32

Richard et al, NAR 2010

DEXSeq package

Compare to:

Davis McCarthy

Screening for splice-variants
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GOseq

6X b f

Genes vary in length ...

6X number of 
fragments

More power to detect 
DE at a given threshold

Matt YoungAlicia Oshlack

Correcting bias with GOseq

1) List of DE genes.

2) Quantify chance of 
being DE as a 
function of length.

3) Use genewise 
probabilities to 
compute enrichment 
probabilities for each 
GO category

ChIP-Seq for epigenetic 
modifications

Surveying multipleStem cell
Luminal 
progenitor Luminal

Mammary stem cells

36

Surveying multiple 
epigenetic marks at 
each point

Stem cell p oge to
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Epigenetic landscape (MS)

37Repitools

Expression vs epigenetic changes

K4 
change

MS vs LP LP vs ML

K27 
change

Expression change Expression change

Conclusions

Self-contained pipeline for RNA-Seq close 
at hand
Methods of differential expression analysis 
of RNA-seq (etc) data based on mean-of RNA seq (etc) data based on mean
variance modelling of counts and 
conditional inference
Shared-parameter likelihood priors provide 
a generally applicable paradigm for 
parameter shrinkage
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