

ligh Coverage of Sequenced Human Genomes			
Matric	Non-Tumor	Tumor	
Meulic	Genomes	Genomes	
Average Gross Mapped Genome Coverage	>55X	> 55X	
Average Genome Read Coverage ≥ 10X	98.27%	98.26%	
Average Unique Genome Read Coverage $\geq 10X$	96.05%	95.98%	
Average Exome Read Coverage $\geq 10X$	96.94%	96.93%	
Average Unique Exome Read Coverage $\geq 10X$	94.42%	94.42%	
ross mapping includes both single and double-end placement ead coverage requires consistent paired-end placement(s) we nique coverage requires a single consistent paired-end placen easurements against the complete ~2.85 GB NCBI reference esults are prior to local <i>de novo</i> assembly.	s. ighted by mapping li nent preferred over a genome.	kelihoods. any other by 100:1.	
10 Complete Genomics, Inc. Data f	irom previous 90 davs a	s of March 29, 2011	

Applications of C Sequencing	Complete Whole Genome Complete
	 Somatic Mutations in Lung Cancer (Genentech) Compared Resected Primary Tumor to matched Normal ~50,000 Somatic SNPs at >90% validation rate 79 Somatic Structural Variations at a 66% validation rate Finding: 1 Point Mutation per 3 Cigarettes smoked Lee et al., Nature 2010
	 Family of Four with Multiple Inherited Diseases (ISB) Found Both Causal Loci, independently confirmed on an independent sequencing platform Measured <i>de novo</i> Mutation Rate in Meioses: 1.1 x 10⁻⁸ Further benchmarked accuracy of the CGA[™] platform <i>Roach et al., Science 2010</i>
	 Affected Individual with Extreme Phenotype (UTSW) 11-Month Old with Severe Hypercholesterolemia Blood Test and Traditional DNA tests failed to identify cause Genome sequencing showed required protein absent which had been missed by other genetic tests Rios et al., HMG 2010

Accuracy of Com 1 Error in 300,00	plete Genomics Data: O Bases on Single Samples
Consensus Error Rate Single Sample Basis	 1 in 125,000 coding; 1 in 91,000 genome-wide (2009 data) Errors include False+ and False- (false hom-ref calls) Recent data at same customer: 1 in 300,000 genome-wide Roach et al., Science 2010; and Institute for Systems Biology (unpublished)
Comparative Analysis Accuracy	 Mendelian Inheritance errors: 1 per 300,000 bp (2009 data) Yoruban trio child errors: 1 per 420,000 bp (2010 data) T-N pairs: <1 false+ somatic SNV per 1-5 MB Roach et al., Science 2010; YRI trio data on www.completegenomics.com
Novel SNV False Discovery Rate	 ~0.4% on a single sample basis (late 2009 data) ~0.2% in replicate sequences (2010 data) This is consistent with above error rates
HapMap Concordance	 99.91% concordance with HapMap II Infinium Subset 99.97% concordance allowing zygosity differences YRI Trio Data. <u>www.completegenomics.com</u> Jan 2011
CNV/SV Calls	 78% SV Sanger Validation Rate (higher in some tumors) 96% of CG calls overlap CNVEs in Conrad et al. (Nature 2010) 95% CNV reproducibility
© 2010 Complete Genomics, Inc.	18

Humans are No Variants Called	ot a List of I by Local	f SNPs: <i>de no</i> v	Co 70 A	mplex ssembly	Com	
Example:	Position: Reference: Allele1: Allele2:	123 456 TAG TCG TAG TCC TAG CCC	7 7 TC 7 cus	890 ACG ACG ACG		
Allele 1:Allele 2:Locus (yes)	G to C single nu TCG to CCCTC le ellow box) is calle	cleotide va ength-alteri ed "comple:	iation ng blo מ" in C	ock substitutio G masterVar i	n file	
Туре					%loci	Expect
Het/Hom SNP (at least	2bp from anoth	ner small v	/arian	t)	84.1%	~3M+
Het/Hom Insertion/Dele	etion, Length P	olymorphi	sm		8.5%	~400K
Het/Hom Substitutions,	Length Conser	ving and	engt	h Altering	1.8%	~65K
Complex Variants					0.7%	~25K
Partial Information (hap	oloid calls and/o	or N's in a	ssemł	bly)	4.9%	~150K
© 2010 Complete Genomics, Inc.	NA19240 Pipeline	v1.8 chr21. Ty	pical cal	I-rate numbers for	Caucasian gern	n-line DNAs. 21

Potential Causative Variants Discovered in Systems **Miller Syndrome Family** Biology Strategy: - Assume recessive inheritance of novel loss-of-function mutations. Allow for simple recessive or compound-heterozygous LOF mutations affecting a single gene/element. Also tested a dominant model. - Assume causal homogeneity for the affected children: Restrict analysis to regions of the genome with identical DNA from mother and father (22%) in both, leveraging the fine scale recombinational map. Disregard mendelian inconsistent sites, leveraging error detection possible in family with fine structure recombination map. Results: Nine candidate causative loci in annotated genome regions fitting recessive or compound-het genetic model: - Four protein-coding changes in: DHODH, DNAH5, KIAA0556, CES1 - One Intronic, near splice site - One in UTR, putative signal sequence - Four in non-protein coding RNA genes Roach et al. Science 2010; Ng et al. Nature 2009 © 2010 Complete Genomics, Inc. 44

Case Studies of S	SNP Validations in Tumors
Genentech 1	 Moderately highly mutated NSC lung tumor with ~50K True+ Moderately aneuploid, matched normal is margin 90% Validation rate using (old version of) CG Somatic Score Lee et al., Nature 2010
Genentech 2	 Lung Cancers from non-smokers – 10x lower True+ "Similar" validation rates using newer Somatic Score
Customer S	 Solid Tumor with very low True+ rate, <<1000 genome-wide Minimal CNV/SVs seen 17 for 25 Somatic SNP validation rate in spite of low True+ Pers. Comm
Customer T	 Blood cancer with tightly matched phenotypes Identical activating mutation found in 90% of tumors Negative had mutation in 10% of reads (highly mixed sample) Manuscript in preparation
Erasmus MC	 Blood cancer using post-therapy remission samples as normals 91% validation rate on SNPs and small dels J Meijerink; UGM 2011
© 2010 Complete Genomics, Inc.	47

CGA Tools™ O cgatools.sourc	pen Source Software Complete		
Function	Description		
map2sam	Convert initital mappings to SAM (and thus BAM)		
evidence2sam	Convert de novo assemblies to SAM (and thus BAM)		
generatemastervar	Create materVar file from CG genome (easy to use)		
snpdiff	snpdiff Compare SNP genotypes to CG genome*		
calldiff Compare two CG genomes, optionally compute Somatic Score*			
testvariants	Compare multiple CG genomes*		
listvariants	Prepare genomes for testvariants*		
join	Add additional annotations (columns) to CG files		
fasta2crr	Create CG format reference database from FASTA files		
crr2fasta	converts CRR sequence files to FASTA file format		
decodecrr	retrieves the sequence for a given range of a chromosome		
listcrr	Lists chromosomes, contigs, ambiguous regions		
help	Display on-line help for CGA Tools command		
* Take into account complex variations, partial information, etc.			

High Concordance Between CG Sequences and Public Data for 69 Public Genomes

Description		Median%	Range
Genome call-rate(reference or variation, not no-call)		96.81	95.6 - 97.4
Exome call-rate		95.92	93.9 - 96.9
Hapmap 1/2	called by CGI	99.32	97.13 - 99.51
Infinium HQ Subset	called concordantly by CGI	99.94	99.88 - 99.96
Hanman 2	called by CGI	99.45	97.77 - 99.66
паршар з	called concordantly by CGI	99.73	99.37 - 99.76
1000 Genomes Low Pass	called by CGI	98.73	96.94 - 99.46
SNP loci*	called concordantly by CGI	99.83	91.46 - 99.18
1000 Genomes High Depth	called by CGI	99.71	97.59 - 99.78
Trios SNP loci**	called concordantly by CGI	99.59	99.41 - 99.70
* Published FDR: 3.3-4.3% ** Published FDR: 1.5-2.4% Complete Genomics published FDR: 0.2-0.6% (older data, more recent data are better still)			
			5

Discordances of CG vs. 1000 Genomes Project: Validation by Sanger sequencing			
Discordant Novel SNP Loci 1KG= 1000 Genomes Project	Successfully Sequenced Loci	CGI Validation Rate	1000 Genomes Validation Rate
CG: Heterozygous SNP/Reference 1KG: no SNP	46 (of 79,381)	95.6%	-
CG: Homozygous SNP 1KG: no SNP	45 (of 5,638)	93.3%	-
CG: no-call 1KG: Heterozygous SNP	36 (of 2,962)	-	94.4%
CG: Homozygous Reference (e.g. no snp) 1KG: Heterozygous SNP	88 (of 403)	74.2%	22.5%
© 2010 Complete Genomics, Inc.			5

