
Introduction to R

Nishant Gopalakrishnan, Martin Morgan

Fred Hutchinson Cancer Research Center

19-21 January, 2011

Getting Started

Atomic Data structures
Creating vectors
Subsetting vectors
Factors

Matrices and arrarys

Lists, data frames, and environments
Lists
Data frames
Environments

Control flow
apply

Functions

Visualizing data

Getting help in R

I help and ?: help("data.frame") or ? data.frame

I help.search("slice"), apropos("mean")

I browseVignettes("Biobase")

I RSiteSearch (requires internet connection)

I R/Bioconductor mailing lists (sessionInfo())

Data structures in R

R has a rich set of self-describing data structures.

I vector - array of the same type

I factor - categorical

I matrix (2-dimensional), array (n-dimensional)

I list - can contain objects of different types

I data.frame - table-like

I environment - hash table

I class - arbitrary record type

I function

Creating vectors
There are two symbols that can be used for assignment: <- and =.

> v <- 123

[1] 123

> s <- "a string"

[1] "a string"

> t <- TRUE

[1] TRUE

> letters # 'letters' is a built-in variable

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i"
[10] "j" "k" "l" "m" "n" "o" "p" "q" "r"
[19] "s" "t" "u" "v" "w" "x" "y" "z"

> length(letters) # 'length' is a function

[1] 26

Functions for Creating vectors

I c - concatenate

I : - integer sequence, seq - general sequence

I rep - repetitive patterns

I vector - vector of given length with default value

> seq(1, 3)

[1] 1 2 3

> 1:3

[1] 1 2 3

> rep(1:2, 3)

[1] 1 2 1 2 1 2

> vector(mode="character", length=5)

[1] "" "" "" "" ""

Naming vectors

The elements of a vector can be named

I at creation time

I using names, dimnames, rownames, colnames

> x <- c(a=0, b=2)

> x

a b
0 2

> names(x) <- c("Australia", "Brazil")

> x

Australia Brazil
0 2

Subsetting

I Subsetting is indicated by [,].

I Note that [is actually a function (try get("[")). x[2, 3] is
equivalent to "["(x, 2, 3). Its behavior can be customized
for particular classes of objects.

I The number of indices supplied to [must be either the
dimension of x or 1.

Subsetting with positive indices

I A subscript consisting of a vector of positive integer values is
taken to indicate a set of indices to be extracted.

> x <- 1:10

> x[2]

[1] 2

> x[1:3]

[1] 1 2 3

I A subscript which is larger than the length of the vector being
subset produces an NA in the returned value.

> x[9:11]

[1] 9 10 NA

Subsetting with positive indices (continued)

I Subscripts which are zero are ignored and produce no
corresponding values in the result.

> x[0:1]

[1] 1

> x[c(0, 0, 0)]

integer(0)

I Subscripts which are NA produce an NA in the result.

> x[c(10, 2, NA)]

[1] 10 2 NA

Assignments with positive indices

I Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the
values on the right (recycling the values if necessary).

> x[2] <- 200

> x[8:10] <- 10

> x

[1] 1 200 3 4 5 6 7 10 10
[10] 10

I If a zero or NA occurs as a subscript in this situation, it is
ignored.

Subsetting with negative indices

I A subscript consisting of a vector of negative integer values is
taken to indicate the indices which are not to be extracted.

> x[-(1:3)]

[1] 4 5 6 7 10 10 10

I Subscripts which are zero are ignored and produce no
corresponding values in the result.

I NA subscripts are not allowed.

I Positive and negative subscripts cannot be mixed.

Assignments with negative indices

I Negative subscripts can appear on the left side of an
assignment. In this case the given subset is assigned the
values on the right (recycling the values if necessary).

> x = 1:10

> x[-(8:10)] = 10

> x

[1] 10 10 10 10 10 10 10 8 9 10

I Zero subscripts are ignored.

I NA subscripts are not permitted.

Subsetting by Logical Predicates

I Vector subsets can also be specified by a logical vector of
TRUEs and FALSEs.

> x = 1:10

> x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE
[7] TRUE TRUE TRUE TRUE

> x[x > 5]

[1] 6 7 8 9 10

I NA values used as logical subscripts produce NA values in the
output.

I The subscript vector can be shorter than the vector being
subsetted. The subscripts are recycled in this case.

I The subscript vector can be longer than the vector being
subsetted. Values selected beyond the end of the vector
produce NAs.

Subsetting by name

I If a vector has named elements, it is possible to extract
subsets by specifying the names of the desired elements.

> x <- c(a=1, b=2, c=3)

> x[c("c", "a", "foo")]

c a <NA>
3 1 NA

>

I If several elements have the same name, only the first of them
will be returned.

I Specifying a non-existent name produces an NA in the result.

Vectorized arithmetic

I Most arithmetic operations in the R language are vectorized.
That means that the operation is applied element-wise.

> 1:3 + 10:12

[1] 11 13 15

I When one operand is shorter than the other, the short operand
is recycled until it is the same length as the longer operand.

> 1 + 1:5

[1] 2 3 4 5 6

> paste(1:5, "A", sep="")

[1] "1A" "2A" "3A" "4A" "5A"

I Many operations which need to have explicit loops in other
languages do not need them with R. You should vectorize any
functions you write.

Factors

I A special type of vector with grouping information about its
components

I A vector with its components grouped with distinct levels

I > col <- c("red", "green", "red", "yellow", "red")

> factor(col)

[1] red green red yellow red
Levels: green red yellow

Matrices and n-Dimensional Arrays

I Can be created using matrix and array.

I Are represented as a vector with a dimension attribute.

I left most index is fastest (like Fortran or Matlab)

Matrix examples

> x <- matrix(1:10, nrow=2)

> dim(x)

[1] 2 5

> x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> as.vector(x)

[1] 1 2 3 4 5 6 7 8 9 10

Naming dimensions of matrix

> x <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)

> dimnames(x) <- list(

+ year = c("2005", "2006", "2007"),

+ "mode of transport" = c("plane", "bus", "boat"))

> x

mode of transport
year plane bus boat
2005 4 6 1
2006 8 4 5
2007 5 2 7

Subsetting matrices

I When subsetting a matrix, missing subscripts are treated as if
all elements are named; so x[1,] corresponds to the first row
and x[,3] to the third column.

I For arrays, the treatment is similar, for example y[,1,].

I These can also be used for assignment, x[1,]=20

Subsetting arrays

I Rectangular subsets of arrays obey similar rules to those which
apply to vectors.

I One point to note is that arrays can also be treated as
vectors. This can be quite useful.

> x = matrix(1:9, ncol=3)

> x[x > 6]

[1] 7 8 9

> x[row(x) > col(x)] = 0

> x

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 0 5 8
[3,] 0 0 9

Lists

I A list is an ordered set of elements that can be arbitrary R
objects (vectors, other lists, functions, . . .). In contrast to
atomic vectors, which are homogeneous, lists can be
heterogeneous.

> lst = list(a=1:3, b = "ciao", c = sqrt)

> lst

$a
[1] 1 2 3

$b
[1] "ciao"

$c
function (x) .Primitive("sqrt")

> lst$c(81)

[1] 9

Subsetting and lists

I Lists are useful as containers for grouping related thing
together (many R functions return lists as their values).

I Because lists are a recursive structure it is useful to have two
ways of extracting subsets.

I Subsetting with [] produces a sub-list of the original list.

I [[]] subsetting extracts a single element from a list.

Subsetting and lists

I Lists are useful as containers for grouping related thing
together (many R functions return lists as their values).

I Because lists are a recursive structure it is useful to have two
ways of extracting subsets.

I The [] form of subsetting produces a sub-list of the list
being subsetted.

I The [[]] form of subsetting can be used to extract a single
element from a list.

Subsetting lists

I Using the [] operator to extract a sublist.

> lst[1]

$a
[1] 1 2 3

I Using the [[]] operator to extract a list element.

> lst[[1]]

[1] 1 2 3

I As with vectors, indexing using logical expressions and names
is also possible.

Subsetting by name

I The dollar operator provides a short-hand way of accessing list
elements by name. This operator is different from all other
operators in R, it does not evaluate its second operand (the
string).

> lst$a

[1] 1 2 3

> lst[["a"]]

[1] 1 2 3

I For $ partial matching is used, for [[it is not by default, but
can be turned on.

Data frames

I Data frames are used to hold a spreadsheet-like table. In a
data.frame, the observations are the rows and the covariates
are the columns.

I Data frames can be treated like matrices and be indexed with
two subscripts. The first subscript refers to the observation,
the second to the variable.

I Data frames are lists, and list subsetting can be used on them.

Create a data frame

> df <-

+ data.frame(type=rep(c("case", "control"), c(2, 3)),

+ time=rexp(5))

> df

type time
1 case 3.5281914
2 case 0.3684031
3 control 0.4300495
4 control 0.6170052
5 control 0.3854129

> df$time

[1] 3.5281914 0.3684031 0.4300495
[4] 0.6170052 0.3854129

Update row and column names

> names(df)

[1] "type" "time"

> rn <- paste("id", 1:5, sep="")

> rownames(df) <- rn

> df[1:2,]

type time
id1 case 3.5281914
id2 case 0.3684031

Environments

I Environments are list-like, but have pass-by-reference
semantics

I There is no concept of ordering in an environment. All objects
are stored and retrieved by name.

> e1 = new.env()

> e1[["a"]] <- 1:3

> assign("b", "ciao", e1)

> ls(e1)

[1] "a" "b"

I Names must match exactly (for lists, partial matching is used
for the $ operator).

Accesssing elements in an environment

I Access to elements in environments can be through, get,
assign, mget.

> mget(c("a", "b"), e1)

$a
[1] 1 2 3

$b
[1] "ciao"

I You can also use the dollar operator and the [[]] operator,
with character arguments only. No partial matching is done.

> e1$a

[1] 1 2 3

> e1[["b"]]

[1] "ciao"

Assigning values to lists and environments

I Items in lists and environments can be (re)placed in much the
same way as items in vectors are replaced.

> lst[[1]] = list(2,3)

> lst[[1]]

[[1]]
[1] 2

[[2]]
[1] 3

> e1$b = 1:10

> e1$b

[1] 1 2 3 4 5 6 7 8 9 10

Control Flow

R has a standard set of control flow functions:

I Looping: for, while and repeat.

I Conditional evaluation: if, switch.

The ‘apply’ family of functions

I A natural programming construct in R is to apply the same
function to elements of a list, of a vector, rows of a matrix, or
elements of an environment.

I The members of this family of functions are different with
regard to the data structures they work on and how the
answers are dealt with.

I Some examples, apply, sapply, lapply, mapply, eapply.

apply

I apply applies a function over the margins of an array.

I For example,
> apply(x, 2, mean)

computes the column means of a matrix x, while
> apply(x, 1, median)

computes the row medians.

apply

apply is often more convenient than a for loop.

> a = matrix(runif(1e6), ncol=10)

> ## 'apply'
> s1 = apply(a, 1, sum)

> ## 'for', pre-allocating for efficiency

> s2 = numeric(nrow(a))

> for(i in 1:nrow(a))

+ s2[i] = sum(a[i,])

> ## purpose-built function (much faster!)

> s3 = rowSums(a)

Writing functions

I Writing R functions provides a means of adding new
functionality to the language.

I Functions that a user writes have the same status as those
which are provided with R.

I Reading the functions provided with the R system is a good
way to learn how to write functions.

Functions

I Here is a function that computes the square of its argument.

> square = function(x)

+ {

+ x * x

+ }

> square(10)

[1] 100

I Because the function body is vectorized, so is this new
function.

> square(1:4)

[1] 1 4 9 16

Composition of functions

I Once a function is defined, it is possible to call it from other
functions.

> sumsq = function(x) sum(square(x))

> sumsq(1:10)

[1] 385

Returning values

I Any single R object can be returned as the value of a
function; including a function.

I If you want to return more than one object, you should put
them in a list (usually with names), or an S4 object (discussed
later), and return that.

I The value returned by a function is either the value of the last
statement executed, or the value of an explicit call to return.

I return takes a single argument, and can be called from any
where in a function.

Visualizing data in R

Basic plots

I plot: x-y plotting

I boxplot: box-whisker plot

I hist: histogram

I barplot: bar plot

Basic scatter plot

> df <- data.frame("y" = 1:10, "x" = rnorm(10))

> plot(dfx, dfy, col = "red")

Trellis graphics

Lattice package

I xyplot: scatter plot

I bwplot: box-whisker plot

I histogram: histogram

I densityplot: kernel density plot

Lattice plots

> xyplot(y ~ x | c, data , groups = g)

I lattice function
I formula

I primary variables
I conditioning variable

I grouping variable

I data

Reading/writing data from/to files

I read.delim("file"), read.table("file")

I write.table, write

I load, save

Packages

I In R the primary mechanism for distributing software is via
packages.

I The most reliable way to install Bioconductor packages (and
their dependencies) is to use biocLite.

> source("http://bioconductor.org/biocLite.R")

> biocLite("Biobase")

I During an R session, use library to load a package in order
to obtain access to its functionality.

> library(Biobase)

Selected references

I Software for Data Analysis: Programming with R by J.
Chambers.

I R Programming for Bioinformatics by R. Gentleman.

I Lattice: Multivariate Data Visualization with R by D. Sarkar.

I Introductory Statistics with R by P. Dalgaard.

I Modern Applied Statistics, S Programming by W. N.
Venables and B. D. Ripley.

Course resource

I Bioconductor Case Studies by F. Hahne, W. Huber, R.
Gentleman, and S. Falcon.

	Outline
	Getting Started
	Atomic Data structures
	Creating vectors
	Subsetting vectors
	Factors

	Matrices and arrarys
	Lists, data frames, and environments
	Lists
	Data frames
	Environments

	Control flow
	apply

	Functions
	Visualizing data

