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Table 1: Tentative schedule.

Thursday: R & Bioconductor
Morning Introduction to R: data structures, functions, packages,

and efficient programming (Section 2)
Afternoon Introduction to Bioconductor: sequences, ranges, and

short reads, and annotation (Sections 3, 4,)

Friday
Morning RNA-seq: Gene differential expression (Section 5); gene

sets (goseq); exon usage (DEXSeq)

Afternoon ChIP-seq work flow (DiffBind); peak calling; working
with peaks; binding motifs (Section 6). Annotating
genes and pathways (Section 7), and variants (Section 8)

1 Introduction

1.1 This workshop

This workshop introduces use of R and Bioconductor for analysis of high-
throughput sequence data. The workshop is structured as a series of short
remarks followed by group exercises. The exercises explore the diversity of tasks
for which R / Bioconductor are appropriate, but are far from comprehensive.

The goals of the workshop are to: (1) develop familiarity with R / Biocon-
ductor software for high-throughput analysis; (2) expose key statistical issues in
the analysis of sequence data; and (3) provide inspiration and a framework for
further independent exploration. An approximate schedule is shown in Table 1.

1.2 Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension
of high-throughput genomic data. Bioconductor started more than 10 years
ago. It gained credibility for its statistically rigorous approach to microarray
pre-preprocessing and designed experiments, and integrative and reproducible
approaches to bioinformatic tasks. There are now more than 500 Bioconductor
packages for expression and other microarrays, sequence analysis, flow cytome-
try, imaging, and other domains. The Bioconductor web site provides installa-
tion, package repository, help, and other documentation.

The Bioconductor web site is at bioconductor.org. Features include:

• Introductory work flows.
• A manifest of Bioconductor packages arranged in BiocViews.
• Annotation (data bases of relevant genomic information, e.g., Entrez gene

ids in model organisms, KEGG pathways) and experiment data (contain-
ing relatively comprehensive data sets and their analysis) packages.

• Mailing lists, including searchable archives, as the primary source of help.
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• Course and conference information, including extensive reference material.
• General information about the project.
• Package developer resources, including guidelines for creating and submit-

ting new packages.

1.3 High-throughput sequence analysis

Recent technological developments introduce high-throughput sequencing ap-
proaches. A variety of experimental protocols and analysis work flows address
gene expression, regulation, and encoding of genetic variants. Experimental pro-
tocols produce a large number (millions per sample) of short (e.g., 35-100, single
or paired-end) nucleotide sequences. These are aligned to a reference or other
genome. Analysis work flows use the alignments to infer levels of gene expression
(RNA-seq), binding of regulatory elements to genomic locations (ChIP-seq), or
prevalence of structural variants (e.g., SNPs, short indels, large-scale genomic
rearrangements). Sample sizes range from minimal replication (e.g,. 2 samples
per treatment group) to thousands of individuals.

1.4 Statistical programming

Many academic and commercial software products are available; why would
one use R and Bioconductor? One answer is to ask about the demands high-
throughput genomic data places on effective computational biology software.

Effective computational biology software High-throughput questions make
use of large data sets. This applies both to the primary data (microarray ex-
pression values, sequenced reads, etc.) and also to the annotations on those
data (coordinates of genes and features such as exons or regulatory regions;
participation in biological pathways, etc.). Large data sets place demands on
our tools that preclude some standard approaches, such as spread sheets. Like-
wise, intricate relationships between data and annotation, and the diversity of
research questions, require flexibility typical of a programming language rather
than a narrowly-enabled graphical user interface.

Analysis of high-throughput data is necessarily statistical. The volume of
data requires that it be appropriately summarized before any sort of compre-
hension is possible. The data are produced by advanced technologies, and these
introduce artifacts (e.g., probe-specific bias in microarrays; sequence or base
calling bias in RNA-seq experiments) that need to be accommodated to avoid
incorrect or inefficient inference. Data sets typically derive from designed ex-
periments, requiring a statistical approach both to account for the design and
to correctly address the large number of observed values (e.g., gene expression
or sequence tag counts) and small number of samples accessible in typical ex-
periments.

Research needs to be reproducible. Reproducibility is both an ideal of the
scientific method, and a pragmatic requirement. The latter comes from the
long-term and multi-participant nature of contemporary science. An analysis
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will be performed for the initial experiment, revisited again during manuscript
preparation, and revisited during reviews or in determining next steps. Like-
wise, analyses typically involve a team of individuals with diverse domains of
expertise. Effective collaborations result when it is easy to reproduce, perhaps
with minor modifications, an existing result, and when sophisticated statistical
or bioinformatic analyses can be effectively conveyed to other group members.

Science moves very quickly. This is driven by the novel questions that are
the hallmark of discovery, and by technological innovation and accessibility.
Rapidity of scientific development places significant burdens on software, which
must also move quickly. Effective software cannot be too polished, because that
requires that the correct analyses are ‘known’ and that significant resources of
time and money have been invested in developing the software; this implies
software that is tracking the trailing edge of innovation. On the other hand,
leading-edge software cannot be too idiosyncratic; it must be usable by a wider
audience than the creator of the software, and fit in with other software relevant
to the analysis.

Effective software must be accessible. Affordability is one aspect of acces-
sibility. Another is transparent implementation, where the novel software is
sufficiently documented and source code accessible enough for the assumptions,
approaches, practical implementation decisions, and inevitable coding errors to
be assessed by other skilled practitioners. A final aspect of affordability is that
the software is actually usable. This is achieved through adequate documenta-
tion, support forums, and training opportunities.

Bioconductor as effective computational biology software What fea-
tures of R and Bioconductor contribute to its effectiveness as a software tool?

Bioconductor is well suited to handle extensive data and annotation. Bio-
conductor ‘classes’ represent high-throughput data and their annotation in an
integrated way. Bioconductor methods use advanced programming techniques
or R resources (such as transparent data base or network access) to minimize
memory requirements and integrate with diverse resources. Classes and meth-
ods coordinate complicated data sets with extensive annotation. Nonetheless,
the basic model for object manipulation in R involves vectorized in-memory
representations. For this reason, particular programming paradigms (e.g., block
processing of data streams; explicit parallelism) or hardware resources (e.g.,
large-memory computers) are sometimes required when dealing with extensive
data.

R is ideally suited to addressing the statistical challenges of high-throughput
data. Three examples include the development of the ‘RMA’ and other normal-
ization algorithm for microarray pre-processing, use of moderated t-statistics for
assessing microarray differential expression, and development of negative bino-
mial approaches to estimating dispersion read counts necessary for appropriate
analysis of RNAseq designed experiments.

Many of the ‘old school’ aspects of R and Bioconductor facilitate repro-
ducible research. An analysis is often represented as a text-based script. Repro-

5



ducing the analysis involves re-running the script; adjusting how the analysis is
performed involves simple text-editing tasks. Beyond this, R has the notion of
a ‘vignette’, which represents an analysis as a LATEX document with embedded
R commands. The R commands are evaluated when the document is built, thus
reproducing the analysis. The use of LATEX means that the symbolic manipula-
tions in the script are augmented with textual explanations and justifications for
the approach taken; these include graphical and tabular summaries at appropri-
ate places in the analysis. R includes facilities for reporting the exact version of
R and associated packages used in an analysis so that, if needed, discrepancies
between software versions can be tracked down and their importance evaluated.
While users often think of R packages as providing new functionality, packages
are also used to enhance reproducibility by encapsulating a single analysis. The
package can contain data sets, vignette(s) describing the analysis, R functions
that might have been written, scripts for key data processing stages, and docu-
mentation (via standard R help mechanisms) of what the functions, data, and
packages are about.

The Bioconductor project adopts practices that facilitate reproducibility.
Versions of R and Bioconductor are released twice each year. Each Bioconductor
release is the result of development, in a separate branch, during the previous
six months. The release is built daily against the corresponding version of R on
Linux, Mac, and Windows platforms, with an extensive suite of tests performed.
The biocLite function ensures that each release of R uses the corresponding
Bioconductor packages. The user thus has access to stable and tested package
versions. R and Bioconductor are effective tools for reproducible research.

R and Bioconductor exist on the leading portion of the software life cycle.
Contributors are primarily from academic institutions, and are directly involved
in novel research activities. New developments are made available in a familiar
format, i.e., the R language, packaging, and build systems. The rich set of
facilities in R (e.g., for advanced statistical analysis or visualization) and the
extensive resources in Bioconductor (e.g., for annotation using third-party data
such as Biomart or UCSC genome browser tracks) mean that innovations can
be directly incorporated into existing work flows. The ‘development’ branches
of R and Bioconductor provide an environment where contributors can explore
new approaches without alienating their user base.

R and Bioconductor also fair well in terms of accessibility. The software
is freely available. The source code is easily and fully accessible for critical
evaluation. The R packaging and check system requires that all functions are
documented. Bioconductor requires that each package contain vignettes to illus-
trate the use of the software. There are very active R and Bioconductor mailing
lists for immediate support, and regular training and conference activities for
professional development.

1.5 Bioconductor for high-throughput sequence analysis

Table 2 enumerates many of the packages available for sequence analysis. The
table includes packages for representing sequence-related data (e.g., Genomi-
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Table 2: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages
Data representation IRanges, GenomicRanges, GenomicFeatures,

Biostrings, BSgenome, girafe.
Input / output ShortRead (fastq), Rsamtools (bam), rtrack-

layer (gff, wig, bed), VariantAnnotation (vcf),
R453Plus1Toolbox (454).

Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnota-
tion.

Alignment Rsubread, Biostrings.
Visualization ggbio, Gviz.
Quality assessment qrqc, seqbias, ReQON , htSeqTools, TEQC , Rolexa,

ShortRead.
RNA-seq BitSeq, cqn, cummeRbund, DESeq, DEXSeq,

EDASeq, edgeR, gage, goseq, iASeq, tweeDEseq.
ChIP-seq, etc. BayesPeak, baySeq, ChIPpeakAnno, chipseq,

ChIPseqR, ChIPsim, CSAR, DiffBind, MEDIPS,
mosaics, NarrowPeaks, nucleR, PICS, PING, RED-
seq, Repitools, TSSi.

Motifs BCRANK , cosmo, cosmoGUI , MotIV , seqLogo,
rGADEM .

3C, etc. HiTC , r3Cseq.
Copy number cn.mops, CNAnorm, exomeCopy , seqmentSeq.
Microbiome phyloseq, DirichletMultinomial, clstutils, manta,

mcaGUI .
Work flows ArrayExpressHTS, Genominator, easyRNASeq,

oneChannelGUI , rnaSeqMap.
Database SRAdb.

cRanges, Biostrings), as well as domain-specific analysis such as RNA-seq (e.g.,
edgeR, DEXSeq), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), and SNPs and
copy number variation (e.g., genoset, ggtools, VariantAnnotation).

1.6 Resources

Dalgaard [4] provides an introduction to statistical analysis with R. Matloff [12]
introduces R programming concepts. Chambers [3] provides more advanced
insights into R. Gentleman [5] emphasizes use of R for bioinformatic program-
ming tasks. The R web site enumerates additional publications from the user
community.
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2 R

R is an open-source statistical programming language. It is used to manipu-
late data, to perform statistical analyses, and to present graphical and other
results. R consists of a core language, additional ‘packages’ distributed with the
R language, and a very large number of packages contributed by the broader
community. Packages add specific functionality to an R installation. R has be-
come the primary language of academic statistical analyses, and is widely used
in diverse areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface:
users type commands into a console; scripts in plain text represent work flows;
tools other than R are used for editing and other tasks. R is a flexible pro-
gramming language, so while one person might use functions provided by R to
accomplish advanced analytic tasks, another might implement their own func-
tions for novel data types. As a programming language, R adopts syntax and
grammar that differ from many other languages: objects in R are ‘vectors’,
and functions are ‘vectorized’ to operate on all elements of the object; R ob-
jects have ‘copy on change’ and ‘pass by value’ semantics, reducing unexpected
consequences for users at the expense of less efficient memory use; common
paradigms in other languages, such as the ‘for’ loop, are encountered much less
commonly in R. Many authors contribute to R, so there can be a frustrating
inconsistency of documentation and interface. R grew up in the academic com-
munity, so authors have not shied away from trying new approaches. Common
statistical analyses are very well-developed.

2.1 R data types

Opening an R session results in a prompt. The user types instructions at the
prompt. Here is an example:

> ## assign values 5, 4, 3, 2, 1 to variable 'x'
> x <- c(5, 4, 3, 2, 1)

> x

[1] 5 4 3 2 1

The first line starts with a # to represent a comment; the line is ignored
by R. The next line creates a variable x. The variable is assigned (using <-,
we could have used = almost interchangeably) a value. The value assigned is
the result of a call to the c function. That it is a function call is indicated by
the symbol named followed by parentheses, c(). The c function takes zero or
more arguments, and returns a vector. The vector is the value assigned to x.
R responds to this line with a new prompt, ready for the next input. The next
line asks R to display the value of the variable x. R responds by printing [1] to
indicate that the subsequent number is the first element of the vector. It then
prints the value of x.
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R has many features to aid common operations. Entering sequences is a very
common operation, and expressions of the form 2:4 create a sequence from 2

to 4. Subsetting one vector by another is enabled with [. Here we create an
integer sequence from 2 to 4, and use the sequence as an index to select the
second, third, and fourth elements of x

> x[2:4]

[1] 4 3 2

R functions operate on variables. Functions are usually vectorized, acting
on all elements of their argument and obviating the need for explicit iteration.
Functions can generate warnings when performing suspect operations, or errors
if evaluation cannot proceed; try log(-1).

> log(x)

[1] 1.61 1.39 1.10 0.69 0.00

Essential data types R has a number of standard data types, to represent
integer, numeric (floating point), complex, character, logical (boolean),
and raw (byte) data. It is possible to convert between data types, and to
discover the type or mode of a variable.

> c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] "foo" "bar" "baz"

> as.character(x) # convert 'x' to character

[1] "5" "4" "3" "2" "1"

> typeof(x) # the number 5 is numeric, not integer

[1] "double"

> typeof(2L) # append 'L' to force integer

[1] "integer"

> typeof(2:4) # ':' produces a sequence of integers
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[1] "integer"

R includes data types particularly useful for statistical analysis, including fac-

tor to represent categories and NA (used in any vector) to represent missing
values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

> sex

[1] Male Female <NA>

Levels: Female Male

Lists, data frames, and matrices All of the vectors mentioned so far are
homogenous, consisting of a single type of element. A list can contain a
collection of different types of elements and, like all vectors, these elements can
be named to create a key-value association.

> lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

> lst

$a

[1] 1 2 3

$b

[1] "foo" "bar"

$c

[1] Male Female <NA>

Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[ to
retrieve the actual list element; as with other vectors, subsetting can use names

> lst[c(3, 1)] # another list

$c

[1] Male Female <NA>

Levels: Female Male

$a

[1] 1 2 3

> lst[["a"]] # the element itself, selected by name

[1] 1 2 3

A data.frame is a list of equal-length vectors, representing a rectangular
data structure not unlike a spread sheet. Each column of the data frame is a
vector, so data types must be homogenous within a column. A data.frame can
be subset by row or column, and columns can be accessed with $ or [[.
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> df <- data.frame(age=c(27L, 32L, 19L),

+ sex=factor(c("Male", "Female", "Male")))

> df

age sex

1 27 Male

2 32 Female

3 19 Male

> df[c(1, 3),]

age sex

1 27 Male

3 19 Male

> df[df$age > 20,]

age sex

1 27 Male

2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint
that all elements are the same type. A matrix is created by taking a vector, and
specifying the number of rows or columns the vector is to represent. On subset-
ting, R coerces a single column data.frame or single row or column matrix to
a vector if possible; use drop=FALSE to stop this behavior.

> m <- matrix(1:12, nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 4 10

[2,] 6 12

> m[, 3]

[1] 7 8 9

> m[, 3, drop=FALSE]

[,1]

[1,] 7

[2,] 8

[3,] 9

An array is a data structure for representing homogenous, rectangular data in
higher dimensions.
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S3 and S4 classes More complicated data structures are represented using
the ‘S3’ or ‘S4’ object system. Objects are often created by functions (for ex-
ample, lm, below), with parts of the object extracted or assigned using accessor
functions. The following generates 1000 random normal deviates as x, and uses
these to create another 1000 deviates y that are linearly related to x but with
some error. We fit a linear regression using a ‘formula’ to describe the relation-
ship between variables, summarize the results in a familiar ANOVA table, and
access fit (an S3 object) for the residuals of the regression, using these as input
first to the var (variance) and then sqrt (square-root) functions. Objects can
be interogated for their class.

> x <- rnorm(1000, sd=1)

> y <- x + rnorm(1000, sd=.5)

> fit <- lm(y ~ x) # formula describes linear regression

> fit # an 'S3' object

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

-0.00534 0.98685

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 959 959 3897 <2e-16 ***

Residuals 998 246 0

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

[1] 0.5

> class(fit)

[1] "lm"

Many Bioconductor packages implement S4 objects to represent data. S3
and S4 systems are quite different from a programmer’s perspective, but fairly
similar from a user’s perspective: both systems encapsulate complicated data
structures, and allow for methods specialized to different data types; accessors
are used to extract information from the objects.
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Functions R functions accept arguments, and return values. Arguments can
be required or optional. Some functions may take variable numbers of argu-
ments, e.g., the columns in a data.frame

> y <- 5:1

> log(y)

[1] 1.61 1.39 1.10 0.69 0.00

> args(log) # arguments 'x' and 'base'; see ?log

function (x, base = exp(1))

NULL

> log(y, base=2) # 'base' is optional, with default value

[1] 2.3 2.0 1.6 1.0 0.0

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

Arguments can be matched by name or position. If an argument appears after
..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position

[1] 2.3 2.0 1.6 1.0 0.0

A function such as anova is a generic that provides an overall signature but
dispatches the actual work to the method corresponding to the class(es) of the
arguments used to invoke the generic. A generic may have fewer arguments
than a method, as with the S3 function anova and its method anova.glm.

> args(anova)

function (object, ...)

NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)

NULL

The ... argument in the anova generic means that additional arguments are
possible; the anova generic hands these arguments to the method it dispatches
to.
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2.2 Useful functions

R has a very large number of functions. The following is a brief list of those
that might be commonly used and particularly useful.

dir, read.table (and friends), scan List files in a directory, read spreadsheet-
like data into R, efficiently read homogenous data (e.g., a file of numeric
values) to be represented as a matrix.

c, factor, data.frame, matrix Create a vector, factor, data frame or matrix.
summary, table, xtabs Summarize, create a table of the number of times ele-

ments occur in a vector, cross-tabulate two or more variables.
t.test, aov, lm, anova Basic comparison of two (t.test) groups, or several groups

via analysis of variance / linear models (aov output is probably more fa-
miliar to biologists), or compare simpler with more complicated models
(anova).

dist, hclust Cluster data.
plot Plot data.
ls, str, library, Rfunctionsearch List objects in the current (or specified)

workspace, or peak at the structure of an object; add a library to or
describe the search path of attached packages.

lapply, sapply, mapply Apply a function to each element of a list (lapply, sap-
ply) or to elements of several lists (mapply).

with Conveniently access columns of a data frame or other element without
having to repeat the name of the data frame.

match, %in% Report the index or existence of elements from one vector that
match another.

split, cut Split one vector by an equal length factor, cut a single vector into
intervals encoded as levels of a factor.

strsplit, grep, sub Operate on character vectors, splitting it into distinct fields,
searching for the occurrence of a patterns using regular expressions (see
?regex, or substituting a string for a regular expression.

install.packages Install a package from an on-line repository into your R.
traceback, debug, browser Report the sequence of functions under evaluatino

at the time of the error; enter a debugger when a particular function or
statement is invoked.

See the help pages (e.g., ?lm) and examples (exmaple(match)) for each of these
functions

Exercise 1
This exercise uses data describing 128 microarray samples as a basis for exploring
R functions. Covariates such as age, sex, type, stage of the disease, etc., are in
a data file pData.csv.

The following command creates a variable pdataFiles that is the location of
a comma-separated value (‘csv’) file to be used in the exercise. A csv file can
be created using, e.g., ‘Save as...’ in spreadsheet software.
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> pdataFile <- system.file(package="SeattleIntro2012Data", "extdata",

+ "pData.csv")

Input the csv file using read.table, assigning the input to a variable pdata.
Use dim to find out the dimensions (number of rows, number of columns) in the
object. Are there 128 rows? Use names or colnames to list the names of the
columns of pdata. Use summary to summarize each column of the data. What
are the data types of each column in the data frame?

A data frame is a list of equal length vectors. Select the ‘sex’ column of the
data frame using [[ or $. Pause to explain to your neighbor why this subsetting
works. Since a data frame is a list, use sapply to ask about the class of each
column in the data frame. Explain to your neighbor what this produces, and
why.

Use table to summarize the number of males and females in the sample.
Consult the help page ?table to figure out additional arguments required to
include NA values in the tabulation.

The mol.biol column summarizes molecular biological attributes of each
sample. Use table to summarize the different molecular biology levels in the
sample. Use %in% to create a logical vector of the samples that are either BCR/ABL
or NEG. Subset the original phenotypic data to contain those samples that are
BCR/ABL or NEG.

After subsetting, what are the levels of the mol.biol column? Set the levels
to be BCR/ABL and NEG, i.e., the levels in the subset.

One would like covariates to be similar across groups of interest. Use t.test

to assess whether BCR/ABL and NEG have individuals with similar age. To do this,
use a formula that describes the response age in terms of the predictor mol.biol.
If age is not independent of molecular biology, what complications might this
introduce into subsequent analysis? Use

Solution: Here we input the data and explore basic properties.

> pdata <- read.table(pdataFile)

> dim(pdata)

[1] 128 21

> names(pdata)

[1] "cod" "diagnosis" "sex" "age"

[5] "BT" "remission" "CR" "date.cr"

[9] "t.4.11." "t.9.22." "cyto.normal" "citog"

[13] "mol.biol" "fusion.protein" "mdr" "kinet"

[17] "ccr" "relapse" "transplant" "f.u"

[21] "date.last.seen"

> summary(pdata)
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cod diagnosis sex age BT remission

10005 : 1 1/15/1997 : 2 F :42 Min. : 5 B2 :36 CR :99

1003 : 1 1/29/1997 : 2 M :83 1st Qu.:19 B3 :23 REF :15

1005 : 1 11/15/1997: 2 NA's: 3 Median :29 B1 :19 NA's:14
1007 : 1 2/10/1998 : 2 Mean :32 T2 :15

1010 : 1 2/10/2000 : 2 3rd Qu.:46 B4 :12

11002 : 1 (Other) :116 Max. :58 T3 :10

(Other):122 NA's : 2 NA's :5 (Other):13

CR date.cr t.4.11. t.9.22.

CR :96 11/11/1997: 3 Mode :logical Mode :logical

DEATH IN CR : 3 1/21/1998 : 2 FALSE:86 FALSE:67

DEATH IN INDUCTION: 7 10/18/1999: 2 TRUE :7 TRUE :26

REF :15 12/7/1998 : 2 NA's :35 NA's :35

NA's : 7 1/17/1997 : 1

(Other) :87

NA's :31

cyto.normal citog mol.biol fusion.protein mdr

Mode :logical normal :24 ALL1/AF4:10 p190 :17 NEG :101

FALSE:69 simple alt. :15 BCR/ABL :37 p190/p210: 8 POS : 24

TRUE :24 t(9;22) :12 E2A/PBX1: 5 p210 : 8 NA's: 3

NA's :35 t(9;22)+other:11 NEG :74 NA's :95

complex alt. :10 NUP-98 : 1

(Other) :21 p15/p16 : 1

NA's :35

kinet ccr relapse transplant

dyploid:94 Mode :logical Mode :logical Mode :logical

hyperd.:27 FALSE:74 FALSE:35 FALSE:91

NA's : 7 TRUE :26 TRUE :65 TRUE :9

NA's :28 NA's :28 NA's :28

f.u date.last.seen

REL :61 1/7/1998 : 2

CCR :23 12/15/1997: 2

BMT / DEATH IN CR: 4 12/31/2002: 2

BMT / CCR : 3 3/29/2001 : 2

DEATH IN CR : 2 7/11/1997 : 2

(Other) : 7 (Other) :83

NA's :28 NA's :35

A data frame can be subset as if it were a matrix, or a list of column vectors.

> head(pdata[,"sex"], 3)

[1] M M F

Levels: F M
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> head(pdata$sex, 3)

[1] M M F

Levels: F M

> head(pdata[["sex"]], 3)

[1] M M F

Levels: F M

> sapply(pdata, class)

cod diagnosis sex age BT

"factor" "factor" "factor" "integer" "factor"

remission CR date.cr t.4.11. t.9.22.

"factor" "factor" "factor" "logical" "logical"

cyto.normal citog mol.biol fusion.protein mdr

"logical" "factor" "factor" "factor" "factor"

kinet ccr relapse transplant f.u

"factor" "logical" "logical" "logical" "factor"

date.last.seen

"factor"

The number of males and females, including NA, is

> table(pdata$sex, useNA="ifany")

F M <NA>

42 83 3

An alternative version of this uses the with function: with(pdata, table(sex,

useNA="ifany")).
The mol.biol column contains the following samples:

> with(pdata, table(mol.biol, useNA="ifany"))

mol.biol

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

10 37 5 74 1 1

A logical vector indicating that the corresponding row is either BCR/ABL or NEG

is constructed as

> ridx <- pdata$mol.biol %in% c("BCR/ABL", "NEG")

We can get a sense of the number of rows selected via table or sum (discuss with
your neighbor what sum does, and why the answer is the same as the number of
TRUE values in the result of the table function).

> table(ridx)
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ridx

FALSE TRUE

17 111

> sum(ridx)

[1] 111

The original data frame can be subset to contain only BCR/ABL or NEG samples
using the logical vector ridx that we created.

> pdata1 <- pdata[ridx,]

The levels of each factor reflect the levels in the original object, rather than the
levels in the subset object, e.g.,

> levels(pdata$mol.biol)

[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG" "NUP-98" "p15/p16"

These can be re-coded by updating the new data frame to contain a factor with
the desired levels.

> pdata1$mol.biol <- factor(pdata1$mol.biol)

> table(pdata1$mol.biol)

BCR/ABL NEG

37 74

To ask whether age differs between molecular biologies, we use a formula age

~ mol.biol to describe the relationship (‘age as a function of molecular biology’)
that we wish to test

> with(pdata1, t.test(age ~ mol.biol))

Welch Two Sample t-test

data: age by mol.biol

t = 4.8, df = 69, p-value = 8.401e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

7.1 17.2

sample estimates:

mean in group BCR/ABL mean in group NEG

40 28

This summary can be visualize with, e.g., the boxplot function

> ## not evaluated

> boxplot(age ~ mol.biol, pdata1)

Molecular biology seem to be strongly associated with age; individuals in the
NEG group are considerably younger than those in the BCR/ABL group. We might
wish to include age as a covariate in any subsequent analysis seeking to relate
molecular biology to gene expression.
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Table 3: Selected base and contributed packages.

Package Description
base Data input and essential manipulation; scripting and

programming concepts.
stats Essential statistical and plotting functions.
lattice, ggplot2 Approaches to advanced graphics.
methods ‘S4’ classes and methods.
parallel Facilities for parallel evaluation.

2.3 Packages

Packages provide functionality beyond that available in base R. There are over
3000 packages in CRAN (comprehensive R archive network) and more than 500
Bioconductor packages. Packages are contributed by diverse members of the
community; they vary in quality (many are excellent) and sometimes contain
idiosyncratic aspects to their implementation. Table 3 outlines key base pack-
ages and selected contributed packages; see a local CRAN mirror (including the
task views summarizing packages in different domains) and Bioconductor for
additional contributed packages.

The lattice package illustrates the value packages add to base R. lattice is
distributed with R but not loaded by default. It provides a very expressive
way to visualize data. The following example plots yield for a number of barley
varieties, conditioned on site and grouped by year. Figure 1 is read from the
lower left corner. Note the common scales, efficient use of space, and not-too-
pleasing default color palette. The Morris sample appears to be mis-labeled for
‘year’, an apparent error in the original data. Find out about the built-in data
set used in this example with ?barley.

> library(lattice)

> dotplot(variety ~ yield | site, data = barley, groups = year,

+ key = simpleKey(levels(barley$year), space = "right"),

+ xlab = "Barley Yield (bushels/acre)",

+ aspect=0.5, layout = c(2,3), ylab=NULL)

New packages can be added to an R installation using install.packages.
A package is installed only once per R installation, but needs to be loaded (with
library) in each session in which it is used. Loading a package also loads any
package that it depends on. Packages loaded in the current session are displayed
with search. The ordering of packages returned by search represents the order
in which the global environment (where commands entered at the prompt are
evaluated) and attached packages are searched for symbols; it is possible for a
package earlier in the search path to mask symbols later in the search path;
these can be disambiguated using ::.

> length(search())

[1] 47

19

http://cran.fhcrc.org
http://cran.fhcrc.org/web/views/
http://bioconductor.org


Barley Yield (bushels/acre)

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Grand Rapids

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

University Farm

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Crookston

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Waseca

1932
1931

●

●

Figure 1: Variety yield conditional on site and grouped by year, for the barley

data set.

> search()

[1] ".GlobalEnv"

[2] "package:TxDb.Dmelanogaster.UCSC.dm3.ensGene"

[3] "package:SeattleIntro2012"

[4] "package:SIFT.Hsapiens.dbSNP132"

[5] "package:SNPlocs.Hsapiens.dbSNP.20101109"

[6] "package:VariantAnnotation"

[7] "package:seqLogo"

[8] "package:grid"

[9] "package:DiffBind"

[10] "package:DEXSeq"

[11] "package:TxDb.Hsapiens.UCSC.hg19.knownGene"

[12] "package:bioDist"

[13] "package:KernSmooth"

[14] "package:ggplot2"

[15] "package:BSgenome.Hsapiens.UCSC.hg19"

[16] "package:BSgenome.Dmelanogaster.UCSC.dm3"

[17] "package:org.Dm.eg.db"

[18] "package:RSQLite"

[19] "package:DBI"

[20] "package:chipseq"

[21] "package:BSgenome"

[22] "package:goseq"
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[23] "package:geneLenDataBase"

[24] "package:BiasedUrn"

[25] "package:ShortRead"

[26] "package:latticeExtra"

[27] "package:RColorBrewer"

[28] "package:Rsamtools"

[29] "package:lattice"

[30] "package:Biostrings"

[31] "package:SeattleIntro2012Data"

[32] "package:edgeR"

[33] "package:limma"

[34] "package:GenomicFeatures"

[35] "package:AnnotationDbi"

[36] "package:Biobase"

[37] "package:GenomicRanges"

[38] "package:IRanges"

[39] "package:BiocGenerics"

[40] "package:stats"

[41] "package:graphics"

[42] "package:grDevices"

[43] "package:utils"

[44] "package:datasets"

[45] "package:methods"

[46] "Autoloads"

[47] "package:base"

> base::log(1:3)

[1] 0.00 0.69 1.10

Exercise 2
Use the library function to load the SeattleIntro2012 package. Use the ses-

sionInfo function to verify that you are using R version 2.15.0 and current
packages, similar to those reported here. What other packages were loaded
along with SeattleIntro2012?

Solution:

> library(SeattleIntro2012)

> sessionInfo()

2.4 Help

Find help using the R help system. Start a web browser with

> help.start()

The ‘Search Engine and Keywords’ link is helpful in day-to-day use.
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Manual pages Use manual pages to find detailed descriptions of the argu-
ments and return values of functions, and the structure and methods of classes.
Find help within an R session as

> ?data.frame

> ?lm

> ?anova # a generic function

> ?anova.lm # an S3 method, specialized for 'lm' objects

S3 methods can be queried interactively. For S3,

> methods(anova)

[1] anova.MAList anova.coxph* anova.coxphlist* anova.gam*

[5] anova.glm anova.glmlist anova.glmmPQL* anova.gls*

[9] anova.lm anova.lme* anova.loess* anova.loglm*

[13] anova.mlm anova.negbin* anova.nls* anova.polr*

[17] anova.survreg* anova.survreglist*

Non-visible functions are asterisked

> methods(class="glm")

[1] add1.glm* anova.glm confint.glm*

[4] cooks.distance.glm* deviance.glm* drop1.glm*

[7] effects.glm* extractAIC.glm* family.glm*

[10] formula.glm* influence.glm* logLik.glm*

[13] model.frame.glm nobs.glm* predict.glm

[16] print.glm profile.glm* residuals.glm

[19] rstandard.glm rstudent.glm summary.glm

[22] vcov.glm* weights.glm*

Non-visible functions are asterisked

It is often useful to view a method definition, either by typing the method name
at the command line or, for ‘non-visible’ methods, using getAnywhere:

> anova.lm

> getAnywhere("anova.loess")

For instance, the source code of a function is printed if the function is invoked
without parentheses. Here we discover that the function head (which returns
the first 6 elements of anything) defined in the utils package, is an S3 generic
(indicated by UseMethod) and has several methods. We use head to look at the
first six lines of the head method specialized for matrix objects.

> utils::head
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function (x, ...)

UseMethod("head")

<bytecode: 0x2640d50>

<environment: namespace:utils>

> methods(head)

[1] head.data.frame* head.default* head.ftable* head.function*

[5] head.matrix head.table*

Non-visible functions are asterisked

> head(head.matrix)

1 function (x, n = 6L, ...)

2 {

3 stopifnot(length(n) == 1L)

4 n <- if (n < 0L)

5 max(nrow(x) + n, 0L)

6 else min(n, nrow(x))

S4 classes and generics are queried in a similar way to S3 classes and generics,
but with different syntax, as for the complement generic in the Biostrings package:

> library(Biostrings)

> showMethods(complement)

Function: complement (package Biostrings)

x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

Methods defined on the DNAStringSet class of Biostrings can be found with

> showMethods(class="DNAStringSet", where=getNamespace("Biostrings"))

Obtaining help on S4 classes and methods requires syntax such as

> class ? DNAStringSet

> method ? "complement,DNAStringSet"

The specification of method and class in the latter must not contain a space
after the comma. The definition of a method can be retrieved as

> selectMethod(complement, "DNAStringSet")
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Vignettes Vignettes, especially in Bioconductor packages, provide an exten-
sive narrative describing overall package functionality. Use

> browseVignettes("SeattleIntro2012")

to see, in your web browser, vignettes available in the SeattleIntro2012 package.
Vignettes usually consist of text with embedded R code, a form of literate
programming. The vignette can be read as a PDF document, while the R
source code is present as a script file ending with extension .R. The script file
can be sourced or copied into an R session to evaluate exactly the commands
used in the vignette.

Exercise 3
Scavenger hunt. Spend five minutes tracking down the following information.

a. The package containing the library function.

b. The author of the alphabetFrequency function, defined in the Biostrings
package.

c. A description of the GappedAlignments class.

d. The number of vignettes in the GenomicRanges package.

e. From the Bioconductor web site, instructions for installing or updating
Bioconductor packages.

f. A list of all packages in the current release of Bioconductor.

g. The URL of the Bioconductor mailing list subscription page.

Solution: Possible solutions are found with the following R commands

> ?library

> library(Biostrings)

> ?alphabetFrequency

> class?GappedAlignments

> browseVignettes("GenomicRanges")

and by visiting the Bioconductor web site, e.g., http://bioconductor.org/

install/ (installation instructions), http://bioconductor.org/packages/release/
bioc/ (current software packages), and http://bioconductor.org/help/mailing-list/

(mailing lists).

2.5 Efficient scripts

There are often many ways to accomplish a result in R, but these different ways
often have very different speed or memory requirements. For small data sets
these performance differences are not that important, but for large data sets
(e.g., high-throughput sequencing; genome-wide association studies, GWAS) or
complicated calculations (e.g., bootstrapping) performance can be important.
There are several approaches to achieving efficient R programming.

24

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/install/
http://bioconductor.org/install/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/help/mailing-list/


Easy solutions Several common performance bottlenecks often have easy so-
lutions; these are outlined here.

Text files often contain more information, for example 1000’s of individuals
at millions of SNPs, when only a subset of the data is required, e.g., during
algorithm development. Reading in all the data can be demanding in terms of
both memory and time. A solution is to use arguments such as colClasses to
specify the columns and their data types that are required, and to use nrow to
limit the number of rows input. For example, the following ignores the first
and fourth column, reading in only the second and third (as type integer and
numeric).

> ## not evaluated

> colClasses <-

+ c("NULL", "integer", "numeric", "NULL")

> df <- read.table("myfile", colClasses=colClasses)

R is vectorized, so traditional programming for loops are often not necessary.
Rather than calculating 100000 random numbers one at a time, or squaring each
element of a vector, or iterating over rows and columns in a matrix to calculate
row sums, invoke the single function that performs each of these operations.

> x <- runif(100000); x2 <- x^2

> m <- matrix(x2, nrow=1000); y <- rowSums(m)

This often requires a change of thinking, turning the sequence of operations
‘inside-out’. For instance, calculate the log of the square of each element of a
vector by calcuating the square of all elements, followed by the log of all elements
x2 <- x^2; x3 <- log(x2), or simply x2 <- log(x^2).

It may sometimes be natural to formulate a problem as a for loop, or the
formulation of the problem may require that a for loop be used. In these
circumstances the appropriate strategy is to pre-allocate the result object, and
to fill the result in during loop iteration.

> ## not evaluated

> result <- numeric(nrow(df))

> for (i in seq_len(nrow(df)))

+ result[[i]] <- some_calc(df[i,])

Some R operations are helfpul in general, but misleading or inefficient in
particular circumstances. An example is the behavior of unlist when the list
is named – R creates new names that have been made unique. This can be
confusing (e.g., when Entrez gene identifiers are ‘mangled’ to unintentionally
look like other identifiers) and expensive (when a large number of new names
need to be created). Avoid creating unnecessary names, e.g.,

> unlist(list(a=1:2)) # name 'a' becomes 'a1', 'a2'

a1 a2

1 2
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> unlist(list(a=1:2), use.names=FALSE) # no names

[1] 1 2

Names can be very useful for avoiding book-keeping errors, but are inefficient
for repeated look-ups; use vectorized access or numeric indexing.

Moderate solutions Several solutions to inefficient code require greater knowl-
edge to implement.

Using appropriate functions can greatly influence performance; it takes expe-
rience to know when an appropriate function exists. For insance, the lm function
could be used to assess differential expression of each gene on a microarray, but
the limma package implements this operation in a way that takes advantage of
the experimental design that is common to each probe on the microarray, and
does so in a very efficient manner.

> ## not evaluated

> library(limma) # microarray linear models

> fit <- lmFit(eSet, design)

Using appropriate algorithms can have signicant performance benefits, es-
pecially as data becomes larger. This solution requires moderate skills, because
one has to be able to think about the complexity (e.g., expected number of op-
erations) of an algorithm, and to identify algorithms that accomplish the same
goal in fewer steps. For example, a naive way of identifying which of 100 num-
bers are in a set of size 10 might look at all 100 × 10 combinations of numbers
(i.e., polynomial time), but a faster way is to create a ‘hash’ table of one of the
set of elements and probe that for each of the other elements (i.e., linear time).
The latter strategy is illustrated with

> x <- 1:100; s <- sample(x, 10)

> inS <- x %in% s

R is an interpretted langauge, and for very challenging computational prob-
lems it may be appropriate to write critical stages of an analysis in a compiled
language like C or Fortran, or to use an existing programming library (e.g., the
BOOST graph library) that efficiently implements advanced algorithms. R has
a well-developed interface to C or Fortan, so it is ‘easy’ to do this. This places a
significant burden on the person implementing the solution, requiring knowledge
of two or more computer languages and of the interface between them.

Measuring performance When trying to improve performance, one wants
to ensure (a) that the new code is actually faster than the previous code, and
(b) both solutions arrive at the same, correct, answer.

The system.time function is a straight-forward way to measure the length of
time a portion of code takes to evaluate. Here we see that the use of apply to
calculate row sums of a matrix is much less efficient than the specialized rowSums

function.
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> m <- matrix(runif(200000), 20000)

> replicate(5, system.time(apply(m, 1, sum))[[1]])

[1] 0.11 0.11 0.11 0.11 0.10

> replicate(5, system.time(rowSums(m))[[1]])

[1] 0.001 0.001 0.001 0.001 0.001

Usually it is appropriate to replicate timings to average over vagaries of system
use, and to shuffle the order in which timings of alternative algorithms are
calculated to avoid artifacts such as initial memory allocation.

Speed is an important metric, but equivalent results are also needed. The
functions identical and all.equal provide different levels of assessing equiva-
lence, with all.equal providing ability to ignore some differences, e.g., in the
names of vector elements.

> res1 <- apply(m, 1, sum)

> res2 <- rowSums(m)

> identical(res1, res2)

[1] TRUE

> identical(c(1, -1), c(x=1, y=-1))

[1] FALSE

> all.equal(c(1, -1), c(x=1, y=-1),

+ check.attributes=FALSE)

[1] TRUE

Two additional functions for assessing performance are Rprof and tracemem;
these are mentioned only briefly here. The Rprof function profiles R code, pre-
senting a summary of the time spent in each part of several lines of R code. It
is useful for gaining insight into the location of performance bottlenecks when
these are not readily apparent from direct inspection. Memory managment, es-
pecially copying large objects, can frequently contribute to poor performance.
The tracemem function allows one to gain insight into how R manages memory;
insights from this kind of analysis can sometimes be useful in restructuring code
into a more efficient sequence.

2.6 Warnings, errors, and debugging

R signals unexpected results through warnings and errors. Warnings occur when
the calculation produces an unusual result that nonetheless does not preclude
further evaluation. For instance log(-1) results in a value NaN (‘not a number’)
that allows computation to continue, but at the same time signals an warning
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> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced

Errors result when the inputs or outputs of a function are such that no further
action can be taken, e.g., trying to take the square root of a character vector

> sqrt("two")

Error in sqrt("two") : Non-numeric argument to mathematical function

Warnings and errors occurring at the command prompt are usually easy
to diagnose. They can be more enigmatic when occurring in a function, and
exacerbated by sometimes cryptic (when read out of context) error messages.

An initial step in coming to terms with errors is to simplify the problem
as much as possible, aiming for a ‘reproducible’ error. The reproducible error
might involve a very small (even trivial) data set that immediately provokes
the error. Often the process of creating a reproducible example helps to clarify
what the error is, and what possible solutions might be.

Invoking traceback() immediately after an error occurs provides a ‘stack’
of the function calls that were in effect when the error occurred. This can help
understand the context in which the error occurred. Knowing the context, one
might use debug to enter into a browser (see ?browser) that allows one to step
through the function in which the error occurred.

It can sometimes be useful to use global options (see ?options) to influence
what happens when an error occurs. Two common global options are error

and warn. Setting error=recover combines the functionality of traceback and
debug, allowing the user to enter the browser at any level of the call stack in
effect at the time the error occurred. Default error behavior can be restored
with options(error=NULL). Setting warn=2 causes warnings to be promoted to
errors. For instance, initial investigation of an error might show that the error
occurs when one of the arguments to a function has value NaN. The error might
be accompanied by a warning message that the NaN has been introduced, but
because warnings are by default not reported immediately it is not clear where
the NaN comes from. warn=2 means that the warning is treated as an error, and
hence can be debugged using traceback, debug, and so on.

Additional useful debugging functions include browser, trace, and setBreak-

point.
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Table 4: Selected Bioconductor packages for representing and manipulating
ranges, strings, and other data structures.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and meth-

ods (e.g., findOverlaps, countOverlaps) for representing
and manipulating ranges of consecutive values. Also in-
troduces DataFrame, SimpleList and other classes tai-
lored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation
(e.g., GRanges, GRangesList), with information about
strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic
ranges, e.g., representing coordinates and organization
of exons and transcripts of known genes.

Biostrings Classes (e.g., DNAStringSet) and methods (e.g., alpha-
betFrequency, pairwiseAlignment) for representing and
manipulating DNA and other biological sequences.

BSgenome Representation and manipulation of large (e.g., whole-
genome) sequences.

3 Ranges and strings

Bioconductor packages increasingly address the analysis of high-throughput se-
quence data. This section introduces two essential ways in which sequence data
are manipulated. Ranges describe both aligned reads and features of interest
on the genome. Sets of DNA strings represent the reads themselves and the
nucleotide sequence of reference genomes. Key packages are summarized in
Table 4.

3.1 Genomic ranges

Next-generation sequencing data consists of a large number of short reads. These
are, typically, aligned to a reference genome. Basic operations are performed
on the alignment, asking e.g., how many reads are aligned in a genomic range
defined by nucleotide coordinates (e.g., in the exons of a gene), or how many
nucleotides from all the aligned reads cover a set of genomic coordinates. How is
this type of data, the aligned reads and the reference genome, to be represented
in R in a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor pack-
ages provide the essential infrastructure for these operations; we start with the
GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Sup-
pose we wished to represent two D. melanogaster genes. The first is located on
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the positive strand of chromosome 3R, from position 19967117 to 19973212. The
second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962306, and right-most base at 18962925. The coordinates are 1-based (i.e.,
the first nucleotide on a chromosome is numbered 1, rather than 0), left-most
(i.e., reads on the minus strand are defined to ‘start’ at the left-most coordi-
nate, rather than the 5’ coordinate), and closed (the start and end coordinates
are included in the range; a range with identical start and end coordinates has
width 1, a 0-width range is represented by the special construct where the end
coordinate is one less than the start coordinate).

A complete definition of these genes as GRanges is:

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames,
much as one would define a data.frame. The start and end coordinates are
grouped into an IRanges instance. The optional seqlengths argument specifies
the maximum size of each sequence, in this case the lengths of chromosomes 3R
and X in the ‘dm2’ build of D. melanogaster genome. This data is displayed as

> genes

GRanges with 2 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 3R [19967117, 19973212] +

[2] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

For the curious, the gene coordinates and sequence lengths are derived from
the org.Dm.eg.db package for genes with Flybase identifiers FBgn0039155 and
FBgn0085359, using the annotation facilities described in section 7.

The GRanges class has many useful methods defined on it. Consult the help
page

> ?GRanges

package vignettes (especially ‘An Introduction to GenomicRanges’)

> browseVignettes("GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with
accessors for getting and updating information.
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> genes[2]

GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

> strand(genes)

'factor' Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

> width(genes)

[1] 6096 620

> length(genes)

[1] 2

> names(genes) <- c("FBgn0039155", "FBgn0085359")

> genes # now with names

GRanges with 2 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 3R [19967117, 19973212] +

FBgn0085359 X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

strand returns the strand information in a compact representation called a
run-length encoding, this is introduced in greater detail below. The ‘names’
could have been specified when the instance was constructed; once named, the
GRanges instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges
class by adding information about seqname, strand, and other information par-
ticularly relevant to representing ranges that are on genomes. The IRanges class
and related data structures (e.g., RangedData) are meant as a more general de-
scription of ranges defined in an arbitrary space. Many methods implemented
on the GRanges class are ‘aware’ of the consequences of genomic location, for
instance treating ranges on the minus strand differently (reflecting the 5’ orien-
tation imposed by DNA) from ranges on the plus strand.
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Figure 2: Ranges

Operations on ranges The GRanges class has many useful methods from
the IRanges class; some of these methods are illustrated here. We use IRanges
to illustrate these operations to avoid complexities associated with strand and
seqname, but the operations are comparable on GRanges. We begin with a
simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These are illustrated in the upper panel of Figure 2.
Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank,
narrow, reflect, resize, restrict, and shift, among others. An illustra-
tion is shift, which translates each range by the amount specified by the
shift argument. Positive values shift to the right, negative to the left;
shift can be a vector, with each element of the vector shifting the corre-
sponding element of the IRanges instance. Here we shift all ranges to the
right by 5, with the result illustrated in the middle panel of Figure 2.

> shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include
disjoin, reduce, gaps, and range. An illustration is reduce, which reduces
overlapping ranges into a single range, as illustrated in the lower panel of
Figure 2.
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> reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges over-
lap individual positions. Rather than returning ranges, coverage returns
a compressed representation (run-length encoding)

> coverage(ir)

'integer' Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nu-
cleotides covered by 0 ranges, followed by a run of length 2 of nucleotides
covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These
include intersect, setdiff, union, pintersect, psetdiff, and punion.

The countOverlaps and findOverlaps functions operate on two sets of
ranges. countOverlaps takes its first argument (the query) and determines
how many of the ranges in the second argument (the subject) each over-
laps. The result is an integer vector with one element for each member
of query. findOverlaps performs a similar operation but returns a more
general matrix-like structure that identifies each pair of query / subject
overlaps. Both arguments allow some flexibility in the definition of ‘over-
lap’.

Common operations on ranges are summarized in Table 5.

elementMetadata (values) and metadata The GRanges class (actually, most of
the data structures defined or extending those in the IRanges package) has two
additional very useful data components. The elementMetadata function (or its
synonym values) allows information on each range to be stored and manipu-
lated (e.g., subset) along with the GRanges instance. The element metadata
is represented as a DataFrame, defined in IRanges and acting like a standard
R data.frame but with the ability to hold more complicated data structures as
columns (and with element metadata of its own, providing an enhanced alter-
native to the Biobase class AnnotatedDataFrame).

> elementMetadata(genes) <-

+ DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))
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Table 5: Common operations on IRanges, GRanges and GRangesList .

Category Function Description
Accessors start, end, width Get or s et the starts, ends and widths

names Get or set the names
elementMetadata, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x

shift Move the ranges by specified amount
resize Change width, ancoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects
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metadata allows addition of information to the entire object. The information is
in the form of a list; any data can be provided.

> metadata(genes) <-

+ list(CreatedBy="A. User", Date=date())

The GRanges class is extremely useful for representing simple ranges. Some
next-generation sequence data and genomic features are more hierarchically
structured. A gene may be represented by seven exons within it. An aligned
read may be represented by discontinuous ranges of alignment to a reference.
The GRangesList class represents this type of information. It is a list-like data
structure, which each element of the list itself a GRanges instance. The gene
FBgn0039155 contains several exons, and can be represented as a list of length
1, where the element of the list contains a GRanges object with 7 elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 elementMetadata cols:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 64137 <NA>

[2] chr3R [19970915, 19971592] + | 64138 <NA>

[3] chr3R [19971652, 19971770] + | 64139 <NA>

[4] chr3R [19971831, 19972024] + | 64140 <NA>

[5] chr3R [19972088, 19972461] + | 64141 <NA>

[6] chr3R [19972523, 19972589] + | 64142 <NA>

[7] chr3R [19972918, 19973212] + | 64143 <NA>

---

seqlengths:

chr3R

27905053

The GRangesList object has methods one would expect for lists (e.g., length,
subsetting). Many of the methods introduced for working with IRanges are also
available, with the method applied element-wise.

The GenomicFeatures package Many public resources provide annotations
about genomic features. For instance, the UCSC genome browser maintains the
‘knownGene’ track of established exons, transcripts, and coding sequences of
many model organisms. The GenomicFeatures package provides a way to re-
trieve, save, and query these resources. The underlying representation is as
sqlite data bases, but the data are available in R as GRangesList objects. The
following exercise explores the GenomicFeatures package and some of the func-
tionality for the IRanges family introduced above.

Exercise 4
Use the helper function bigdata and dir to identify the path to a data base
created by makeTranscriptDbFromUCSC.
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Load the saved TranscriptDb object using loadDb.
Extract all exon coordinates, organized by gene, using exonsBy. What is the

class of this object? How many elements are in the object? What does each
element correspond to? And the elements of each element? Use elementLengths

and table to summarize the number of exons in each gene, for instance, how
many single-exon genes are there?

Select just those elements corresponding to flybase gene ids FBgn0002183,
FBgn0003360, FBgn0025111, and FBgn0036449. Use reduce to simplify gene
models, so that exons that overlap are considered ‘the same’.

Solution:

> txdbFile <- dir(bigdata(), "sqlite", full=TRUE)

> txdb <- loadDb(txdbFile)

> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths(ex0)))

1 2 3 4 5 6

3182 2608 2070 1628 1133 886

> ids <- c("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgn0036449")

> ex <- reduce(ex0[ids])

Exercise 5
(Independent) Create a TranscriptDb instance from UCSC, using makeTran-

scriptDbFromUCSC.

Solution:

> txdb <- makeTranscriptDbFromUCSC("dm3", "ensGene")

> saveDb(txdb, "my.dm3.ensGene.txdb.sqlite")

3.2 Working with strings

Underlying the ranges of alignments and features are DNA sequences. The
Biostrings package provides tools for working with this data. The essential
data structures are DNAString and DNAStringSet , for working with one or
multiple DNA sequences. The Biostrings package contains additional classes
for representing amino acid and general biological strings. The BSgenome and
related packages (e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to rep-
resent whole-genome sequences. The following exercise explores these packages.

Exercise 6
The objective of this exercise is to calculate the GC content of the exons of a
single gene, whose coordinates are specified by the ex object of the previous
exercise.
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Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the
UCSC representation of D. melanogaster genome assembly dm3.

Extract the sequence name of the first gene of ex. Use this to load the
appropriate D. melanogaster chromosome.

Use Views to create views on to the chromosome that span the start and end
coordinates of all exons.

The SeattleIntro2012 package defines a helper function gcFunction (devel-
oped in a later exercise) to calculate GC content. Use this to calculate the GC
content in each of the exons.

Solution:

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> nm <- as.character(unique(seqnames(ex[[1]])))

> chr <- Dmelanogaster[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

Here is the helper function, available in the SeattleIntro2012 package, to calcu-
late GC content:

> gcFunction

function (x)

{

alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums(alf[, c("G", "C")])

}

<environment: namespace:SeattleIntro2012>

The subject GC content is

> subjectGC <- gcFunction(v)
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Table 6: Selected Bioconductor packages for sequence reads and alignments.

Package Description
ShortRead Defines the ShortReadQ class and functions for ma-

nipulating fastq files; these classes rely heavily on
Biostrings.

GenomicRanges GappedAlignments and GappedAlignmentPairs store
single- and paired-end aligned reads.

Rsamtools Provides access to BAM alignment and other large
sequence-related files.

rtracklayer Input and output of bed, wig and similar files

4 Reads and alignments

The following sections introduce core tools for working with high-throughput
sequence data; key packages for representating reads and alignments are sum-
marized in Table 6. This section focus on the reads and alignments that are
the raw material for analysis. Section 7 introduces resources for annotating se-
quences, while section 5 addresses statistical approaches to assessing differential
representation in RNA-seq experiments. Section 6 outlines ChIP-seq analysis.

4.1 The pasilla data set

As a running example, we use the pasilla data set, derived from [2]. The authors
investigate conservation of RNA regulation between D. melanogaster and mam-
mals. Part of their study used RNAi and RNA-seq to identify exons regulated by
Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and NOVA2.
Briefly, their experiment compared gene expression as measured by RNAseq in
S2-DRSC cells cultured with, or without, a 444bp dsRNA fragment correspond-
ing to the ps mRNA sequence. Their assessment investigated differential exon
use, but our worked example will focus on gene-level differences.

In this section we look at a subset of the ps data, corresponding to reads
obtained from lanes of their RNA-seq experiment, and to the same reads aligned
to a D. melanogaster reference genome. Reads were obtained from GEO and
the Short Read Archive (SRA); reads were aligned to D. melanogaster reference
genome dm3 as described in the pasilla experiment data package.

4.2 Short reads

Sequencer technologies The Illumina GAII and HiSeq technologies generate
sequences by measuring incorporation of florescent nucleotides over successive
PCR cycles. These sequencers produce output in a variety of formats, but
FASTQ is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC
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+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique iden-
tifiers. The identifier produced by the sequencer typically includes a machine id
followed by colon-separated information on the lane, tile, x, and y coordinate
of the read. The example illustrated here also includes the SRA accession num-
ber, added when the data was submitted to the archive. The machine identifier
could potentially be used to extract information about batch effects. The spatial
coordinates (lane, tile, x, y) are often used to identify optical duplicates; spatial
coordinates can also be used during quality assessment to identify artifacts of
sequencing, e.g., uneven amplification across the flow cell, though these spatial
effects are rarely pursued.

The second and fourth lines of the FASTQ record are the nucleotides and
qualities of each cycle in the read. This information is given in 5’ to 3’ orientation
as seen by the sequencer. A letter N in the sequence is used to signify bases
that the sequencer was not able to call. The fourth line of the FASTQ record
encodes the quality (confidence) of the corresponding base call. The quality
score is encoded following one of several conventions, with the general notion
being that letters later in the visible ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of lower quality; this is developed further below. Both the sequence and
quality scores may span multiple lines.

Technologies other than Illumina use different formats to represent sequences.
Roche 454 sequence data is generated by ‘flowing’ labeled nucleotides over sam-
ples, with greater intensity corresponding to longer runs of A, C, G, or T. This
data is represented as a series of ‘flow grams’ (a kind of run-length encoding
of the read) in Standard Flowgram Format (SFF). The Bioconductor package
R453Plus1Toolbox has facilities for parsing SFF files, but after quality con-
trol steps the data are frequently represented (with some loss of information) as
FASTQ. SOLiD technologies produce sequence data using a ‘color space’ model.
This data is not easily read in to R, and much of the error-correcting benefit of
the color space model is lost when converted to FASTQ; SOLiD sequences are
not well-handled by Bioconductor packages.

Short reads in R FASTQ files can be read in to R using the readFastq

function from the ShortRead package. Use this function by providing the path to
a FASTQ file. There are sample data files available in the SeattleIntro2012Data
package, each consisting of 1 million reads from a lane of the Pasilla data set.

> fastqDir <- file.path(bigdata(), "fastq")

> fastqFiles <- dir(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1], withIds=TRUE)

> fq
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class: ShortReadQ

length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortReadQ .

> head(sread(fq), 3)

A DNAStringSet instance of length 3

width seq

[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

[3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)

class: FastqQuality

quality:

A BStringSet instance of length 3

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

> head(id(fq), 3)

A BStringSet instance of length 3

width seq

[1] 58 SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

[2] 57 SRR031724.2 HWI-EAS299_4_30M2BAAXX:5:1:937:1157 length=37

[3] 58 SRR031724.4 HWI-EAS299_4_30M2BAAXX:5:1:1443:1122 length=37

The ShortReadQ class illustrates class inheritance. It extends the ShortRead
class

> getClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id

Class: QualityScore DNAStringSet BStringSet

Extends:

Class "ShortRead", directly

Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"
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Methods defined on ShortRead are available for ShortReadQ .

> showMethods(class="ShortRead", where=getNamespace("ShortRead"))

For instance, the width can be used to demonstrate that all reads consist of 37
nucleotides.

> table(width(fq))

37

1000000

The alphabetByCycle function summarizes use of nucleotides at each cycle in a
(equal width) ShortReadQ or DNAStringSet instance.

> abc <- alphabetByCycle(sread(fq))

> abc[1:4, 1:8]

cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 78194 153156 200468 230120 283083 322913 162766 220205

C 439302 265338 362839 251434 203787 220855 253245 287010

G 397671 270342 258739 356003 301640 247090 227811 246684

T 84833 311164 177954 162443 211490 209142 356178 246101

FASTQ files are getting larger. A very common reason for looking at data
at this early stage in the processing pipeline is to explore sequence quality. In
these circumstances it is often not necessary to parse the entire FASTQ file.
Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)

> yield(sampler) # sample of 1000000 reads

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality
tails, adapter sequences, or artifacts of sample preparation. The FastqStreamer
class can be used to ‘stream’ over the fastq files in chunks, processing each chunk
independently.

ShortRead contains facilities for quality assessment of FASTQ files. Here we
generate a report from a sample of 1 million reads from each of our files and
display it in a web browser

> qas0 <- Map(function(fl, nm) {

+ fq <- FastqSampler(fl)

+ qa(yield(fq), nm)

+ }, fastqFiles,

+ sub("_subset.fastq", "", basename(fastqFiles)))

> qas <- do.call(rbind, qas0)

> rpt <- report(qas, dest=tempfile())

> browseURL(rpt)
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A report from a larger subset of the experiment is available

> rpt <- system.file("GSM461176_81_qa_report", "index.html",

+ package="SeattleIntro2012")

> browseURL(rpt)

Exercise 7
Use the helper function bigdata (defined in the SeattleIntro2012 package) and
the file.path and dir functions to locate two fastq files from [2] (the files were
obtained as described in the appendix and pasilla experiment data package.

Input one of the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use

the sread accessor to extract the reads, and the collapse=TRUE argument to the
alphabetFrequency function). Using the helper function gcFunction from the
SeattleIntro2012 package, draw a histogram of the distribution of GC frequencies
across reads.

Use alphabetByCycle to summarize the frequency of each nucleotide, at each
cycle. Plot the results using matplot, from the graphics package.

As an advanced exercise, and if on Mac or Linux, use the parallel package
and mclapply to read and summarize the GC content of reads in two files in
parallel.

Solution: Discovery:

> dir(bigdata())

[1] "bam" "dm3.ensGene.txdb.sqlite"

[3] "fastq"

> fls <- dir(file.path(bigdata(), "fastq"), full=TRUE)

Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.55

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))

> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))

> matplot(t(abc[c("A", "C", "G", "T"),]), type="l")
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Advanced (Mac, Linux only): processing on multiple cores.

> library(parallel)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ })

> ## simplify list of length 2 to 2-D array

> gc <- simplify2array(gc0)

> matplot(gc, type="s")

Exercise 8
Use quality to extract the quality scores of the short reads. Interpret the
encoding qualitatively.

Convert the quality scores to a numeric matrix, using as. Inspect the numeric
matrix (e.g., using dim) and understand what it represents.

Use colMeans to summarize the average quality score by cycle. Use plot to
visualize this.

Solution:

> head(quality(fq))

class: FastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+
[4] 37 IIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B

[5] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&.$

[6] 37 III.IIIIIIIIIIIIIIIIIII%IIE(-EIH<IIII

> qual <- as(quality(fq), "matrix")

> dim(qual)

[1] 1000000 37

> plot(colMeans(qual), type="b")
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4.3 Alignments

Most down-stream analysis of short read sequences is based on reads aligned to
reference genomes. There are many aligners available, including BWA [11, 10],
Bowtie [9], and GSNAP; merits of these are discussed in the literature. There
are also alignment algorithms implemented in Bioconductor (e.g., matchPDict in
the Biostrings package, and the Rsubread package); matchPDict is particularly
useful for flexible alignment of moderately sized subsets of data.

Alignment formats Most main-stream aligners produce output in SAM (text-
based) or BAM format. A SAM file is a text file, with one line per aligned read,
and fields separated by tabs. Here is an example of a single SAM line, split into
fields.

> fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

> strsplit(readLines(fl, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] "73"

[3] "seq1"

[4] "1"

[5] "99"

[6] "36M"

[7] "*"

[8] "0"

[9] "0"

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

[11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7"

[12] "MF:i:18"

[13] "Aq:i:73"

[14] "NM:i:0"

[15] "UQ:i:0"

[16] "H0:i:1"

[17] "H1:i:0"

Fields in a SAM file are summarized in Table 7. We recognize from the
FASTQ file the identifier string, read sequence and quality. The alignment is to
a chromosome ‘seq1’ starting at position 1. The strand of alignment is encoded
in the ‘flag’ field. The alignment record also includes a measure of mapping
quality, and a CIGAR string describing the nature of the alignment. In this
case, the CIGAR is 36M, indicating that the alignment consisted of 36 Matches
or mismatches, with no indels or gaps; indels are represented by I and D; gaps
(e.g., from alignments spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that
is more efficiently parsed by software; BAM files are the primary way in which
aligned reads are imported in to R.
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Table 7: Fields in a SAM record. From http://samtools.sourceforge.net/

samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIAGR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSistion
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

Aligned reads in R The readGappedAlignments function from the Genom-
icRanges package reads essential information from a BAM file in to R. The
result is an instance of the GappedAlignments class. The GappedAlignments
class has been designed to allow useful manipulation of many reads (e.g., 20
million) under moderate memory requirements (e.g., 4 GB).

> alnFile <- system.file("extdata", "ex1.bam", package="Rsamtools")

> aln <- readGappedAlignments(alnFile)

> head(aln, 3)

GappedAlignments with 3 alignments and 0 elementMetadata cols:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] seq1 + 36M 36 1 36 36

[2] seq1 + 35M 35 3 37 35

[3] seq1 + 35M 35 5 39 35

ngap

<integer>

[1] 0

[2] 0

[3] 0

---

seqlengths:

seq1 seq2

1575 1584

The readGappedAlignments function takes an additional parameter, param, allow-
ing the user to specify regions of the BAM file (e.g., known gene coordinates)
from which to extract alignments.
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A GappedAlignments instance is like a data frame, but with accessors as
suggested by the column names. It is easy to query, e.g., the distribution of
reads aligning to each strand, the width of reads, or the cigar strings

> table(strand(aln))

+ -

1647 1624

> table(width(aln))

30 31 32 33 34 35 36 38 40

2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4I17M

2804 283 112 37 6 4

Exercise 9
Use bigdata, file.path and dir to obtain file paths to the BAM files. These are
a subset of the aligned reads, overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore
the reads, e.g., using table or xtabs, to summarize which chromosome and
strand the subset of reads is from.

The object ex created earlier contains coordinates of four genes. Use coun-

tOverlaps to first determine the number of genes an individual read aligns to,
and then the number of uniquely aligning reads overlapping each gene. Since
the RNAseq protocol was not strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function,
and calculate counts on each file. On Mac or Linux, can you easily parallelize
this operation?

Solution: We discover the location of files using standard R commands:

> fls <- dir(file.path(bigdata(), "bam"), ".bam$", full=TRUE)

> names(fls) <- sub("_.*", "", basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R
commands to explore the data.

> ## input

> aln <- readGappedAlignments(fls[1])

> xtabs(~seqnames + strand, as.data.frame(aln))

strand

seqnames + -

chr3L 5402 5974

chrX 2278 2283
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To count overlaps in regions defined in a previous exercise, load the regions.

> data(ex) # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus
or minus strand regardless of the strand on which the corresponding gene is
encoded. Adjust the strand of the aligned reads to indicate that the strand is
not known.

> strand(aln) <- "*" # protocol not strand-aware

For simplicity, we are interested in reads that align to only a single gene. Count
the number of genes a read aligns to. . .

> hits <- countOverlaps(aln, ex)

> table(hits)

hits

0 1 2

772 15026 139

and reverse the operation to count the number of times each region of interest
aligns to a uniquely overlapping alignment.

> cnt <- countOverlaps(ex, aln[hits==1])

A simple function for counting reads is

> counter <-

+ function(filePath, range)

+ {

+ aln <- readGappedAlignments(filePath)

+ strand(aln) <- "*"

+ hits <- countOverlaps(aln, range)

+ cnt <- countOverlaps(range, aln[hits==1])

+ names(cnt) <- names(range)

+ cnt

+ }

This can be applied to all files using sapply

> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file.
This encourages us to count reads in each BAM file in parallel, decreasing the
length of time required to execute our program. On Linux and Mac OS, a
straight-forward way to parallelize this operation is:

> if (require(parallel))

+ simplify2array(mclapply(fls, counter, ex))
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Figure 3: GC content in aligned reads

The GappedAlignments class inputs only some of the fields of a BAM file,
and may not be appropriate for all uses. In these cases the scanBam function in
Rsamtools provides greater flexibility. The idea is to view BAM files as a kind
of data base. Particular regions of interest can be selected, and the information
in the selection restricted to particular fields. These operations are determined
by the values of a ScanBamParam object, passed as the named param argument
to scanBam.

Exercise 10
Consult the help page for ScanBamParam, and construct an object that restricts
the information returned by a scanBam query to the aligned read DNA sequence.
Your solution will use the what parameter to the ScanBamParam function.

Use the ScanBamParam object to query a BAM file, and calculate the GC con-
tent of all aligned reads. Summarize the GC content as a histogram (Figure 3).

Solution:

> param <- ScanBamParam(what="seq")

> seqs <- scanBam(fls[[1]], param=param)

> readGC <- gcFunction(seqs[[1]][["seq"]])

> hist(readGC)
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5 RNA-seq

5.1 Varieties of RNA-seq

RNA-seq experiments typically ask about differences in trancription of genes
or other features across experimental groups. The analysis of designed experi-
ments is statistical, and hence an ideal task for R. The overall structure of the
analysis, with tens of thousands of features and tens of samples, is reminiscent
of microarray analysis; some insights from the microarray domain will apply, at
least conceptually, to the analysis of RNA-seq experiments.

The most straight-forward RNA-seq experiments quantify abundance for
known gene models. The known models are derived from reference databases,
reflecting the accumulated knowledge of the community responsible for the data.
The ‘knownGenes’ track of the UCSC genome browser represents one source of
such data. A track like this describes, for each gene, the transcripts and exons
that are expected based on current data. The GenomicFeatures package allows
ready access to this information by creating a local database out of the track
information. This data base of known genes is coupled with high throughput
sequence data by counting reads overlapping known genes and modeling the
relationship between treatment groups and counts.

A more ambitious approach to RNA-seq attempts to identify novel tran-
scripts. This requires that sequenced reads be assembled into contigs that,
presumably, correspond to expressed transcripts that are then located in the
genome. Regions identified in this way may correspond to known transcripts,
to novel arrangements of known exons (e.g., through alternative splicing), or to
completely novel constructs. We will not address the identification of completely
novel transcripts here, but will instead focus on the analysis of the designed ex-
periments: do the transcript abundances, novel or otherwise, differ between
experimental groups?

Bioconductor packages play a role in several stages of an RNA-seq analysis
(Table 8; a more comprehensive list is under the RNAseq and HighThroughput-
Sequencing BiocViews terms). The GenomicRanges infrastructure can be effec-
tively employed to quantify known exon or transcript abundances. Quantified
abundances are in essence a matrix of counts, with rows representing features
and columns samples. The edgeR [16] and DESeq [1] packages facilitate anal-
ysis of this data in the context of designed experiments, and are appropriate
when the questions of interest involve between-sample comparisons of relative
abundance. The DEXSeq package extends the approach in edgeR and DESeq
to ask about within-gene, between group differences in exon use, i.e., for a given
gene, do groups differ in their exon use?

5.2 Data preparation

Counting reads aligning to genes An essential step is to arrive at some
measure of gene representation amongst the aligned reads. A straight-forward
and commonly used approach is to count the number of times a read overlaps
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Table 8: Selected Bioconductor packages for RNA-seq analysis.

Package Description
EDASeq Exploratory analysis and QA; also qrqc, ShortRead.
edgeR, DESeq Generalized Linear Models using negative binomial er-

ror.
DEXSeq Exon-level differential representation.
goseq Gene set enrichment tailored to RNAseq count data;

also limma’s roast or camera after transformation with
voom or cqn.

easyRNASeq Workflow; also ArrayExpressHTS, rnaSeqMap,
oneChannelGUI .

Rsubread Alignment (Linux only); also Biostrings matchPDict for
special-purpose alignments.

exons. Nuance arises when a read only partly overlaps an exon, when two exons
overlap (and hence a read appears to be ‘double counted’), when reads are
aligned with gaps and the gaps are inconsistent with known exon boundaries,
etc. The summarizeOverlaps function in the GenomicRanges package provides
facilities for implementing different count strategies, using the argument mode

to determine the counting strategy. The result of summarizeOverlaps can easily
be used in subsequent steps of an RNA-seq analysis.

Software other than R can also be used to summarize count data. An im-
portant point is that the desired input for downstream analysis is often raw
count data, rather than normalized (e.g., reads per kilobase of gene model per
million mapped reads) values. This is because counts allow information about
uncertainty of estimates to propagate to later stages in the analysis.

Counting and filtering The following exercise illustrates key steps in count-
ing and filtering reads overlapping known genes.

Exercise 11
The SeattleIntro2012Data package contains a data set counts with pre-computed
count data. Use the data command to load it. Create a variable grp to define
the groups associated with each column, using the column names as a proxy for
more authoritative metadata.

Create a DGEList object (defined in the edgeR package) from the count matrix
and group information. Calculate relative library sizes using the calcNormFac-

tors function.
A lesson from the microarray world is to discard genes that cannot be in-

formative (e.g., because of lack of variation), regardless of statistical hypothesis
under evaluation. Filter reads to remove those that are represented at less than
1 per million mapped reads, in fewer than 2 samples.

As a sanity check and to provide confidence that subsequent analysis is
worthwhile, use plotMDS on the filtered reads to perform multi-dimensional scal-
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ing. Interpret the resulting plot.

Solution: Here we load the data (a matrix of counts) and create treatment
group names from the column names of the counts matrix.

> data(counts)

> dim(counts)

[1] 14470 7

> grps <- factor(sub("[1-4].*", "", colnames(counts)),

+ levels=c("untreated", "treated"))

> pairs <- factor(c("single", "paired", "paired",

+ "single", "single", "paired", "paired"))

> pData <- data.frame(Group=grps, PairType=pairs,

+ row.names=colnames(counts))

We use the edgeR package, creating a DGEList object from the count and
group data. The calcNormFactors function estimates relative library sizes for
use as offsets in the generalized linear model.

> library(edgeR)

> dge <- DGEList(counts, group=pData$Group)

> dge <- calcNormFactors(dge)

To filter reads, we scale the counts by the library sizes and express the results
on a per-million read scale. This is done using the sweep function, dividing each
column by it’s library size and multiplying by 1e6. We require that the gene be
represented at a frequency of at least 1 read per million mapped (m > 1, below)
in two or more samples (rowSums(m > 1) >= 2), and use this criterion to subset
the DGEList instance.

> m <- sweep(dge$counts, 2, 1e6 / dge$samples$lib.size, `*`)
> ridx <- rowSums(m > 1) >= 2

> table(ridx) # number filtered / retained

ridx

FALSE TRUE

6476 7994

> dge <- dge[ridx,]

Multi-dimensional scaling takes data in high dimensional space (in our case,
the dimension is equal to the number of genes in the filtered DGEList instance)
and reduces it to fewer (e.g., 2) dimensions, allowing easier visual assessment.
The plot is shown in Figure 4; that the samples separate into distinct groups
provides some reassurance that the data differ according to treatment. Nonethe-
less, there appears to be considerable heterogeneity within groups. Any guess,
perhaps from looking at the quality report generated earlier, what the within-
group differences are due to?

> plotMDS.DGEList(dge)
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Figure 4: MDS plot of lanes from the Pasilla data set.

5.3 Differential representation

RNA-seq differential representation experiments, like classical microarray ex-
periments, consist of a single statistical design (e.g, comparing expression of
samples assigned to ‘Treatment’ versus ‘Control’ groups) applied to each fea-
ture for which there are aligned reads. While one could naively perform simple
tests (e.g., t-tests) on all features, it is much more informative to identify impor-
tant aspects of RNAseq experiments, and to take a flexible route through this
part of the work flow. Key steps involve formulation of a model matrix to cap-
ture the experimental design, estimation of a test static to describe differences
between groups, and calculation of a P value or other measure as a statement
of statistical significance.

Experimental design In R, an experimental design is specified with the
model.matrix function. The function takes as its first argument a formula

describing the independent variables and their relationship to the response
(counts), and as a second argument a data.frame containing the (phenotypic)
data that the formula describes. A simple formula might read ~ 1 + Group,
which says that the response is a linear function involving an intercept (1) plus
a term encoded in the variable Group. If (as in our case) Group is a factor, then
the first coefficient (column) of the model matrix corresponds to the first level
of Group, and subsequent terms correspond to deviations of each level from the
first. If Group were numeric rather than factor , the formula would represent
linear regressions with an intercept. Formulas are very flexible, allowing repre-
sentation of models with one, two, or more factors as main effects, models with
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or without interaction, and with nested effects.

Exercise 12
To be more concrete, use the model.matrix function and a formula involving
Group to create the model matrix for our experiment.

Solution: Here is the experimental design; it is worth discussing with your
neighbor the interpretation of the design instance.

> (design <- model.matrix(~ Group, pData))

(Intercept) Grouptreated

treated1fb 1 1

treated2fb 1 1

treated3fb 1 1

untreated1fb 1 0

untreated2fb 1 0

untreated3fb 1 0

untreated4fb 1 0

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$Group

[1] "contr.treatment"

The coefficient (column) labeled ‘Intercept’ corresponds to the first level of
Group, i.e., ‘untreated’. The coefficient ‘Grouptreated’ represents the deviation
of the treated group from untreated. Eventually, we will test whether the second
coefficient is significantly different from zero, i.e., whether samples with a ‘1’ in
the second column are, on average, different from samples with a ‘0’. On the
one hand, use of model.matrix to specify experimental design implies that the
user is comfortable with something more than elementary statistical concepts,
while on the other it provides great flexibility in the experimental design that
can be analyzed.

Negative binomial error RNA-seq count data are often described by a neg-
ative binomial error model. This model includes a ‘dispersion’ parameter that
describes biological variation beyond the expectation under a Poisson model.
The simplest approach estimates a dispersion parameter from all the data. The
estimate needs to be conducted in the context of the experimental design, so
that variability between experimental factors is not mistaken for variability in
counts. The square root of the estimated dispersion represents the coefficient of
variation between biological samples. The following edgeR commands estimate
dispersion.

> dge <- estimateTagwiseDisp(dge)

> mean(sqrt(dge$tagwise.dispersion))
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[1] 0.18

This approach assumes that a common dispersion parameter is shared by all
genes. A different approach, appropriate when there are more samples in the
study, is to estimate a dispersion parameter that is specific to each tag (using
estimateTagwiseDisp in the edgeR package). As another alternative, Anders
and Huber [1] note that dispersion increases as the mean number of reads per
gene decreases. One can estimate the relationship between dispersion and mean
using estimateGLMTrendedDisp in edgeR, using a fitted relationship across all
genes to estimate the dispersion of individual genes. Because in our case sam-
ple sizes (biological replicates) are small, gene-wise estimates of dispersion are
likely imprecise. One approach is to moderate these estimates by calculating a
weighted average of the gene-specific and common dispersion; estimateGLMTag-
wiseDisp performs this calculation, requiring that the user provides an a priori
estimate of the weight between tag-wise and common dispersion.

Differential representation The final steps in estimating differential repre-
sentation are to fit the full model; to perform the likelihood ratio test comparing
the full model to a model in which one of the coefficients has been removed; and
to summarize, from the likelihood ratio calculation, genes that are most differ-
entially represented. The result is a ‘top table’ whose row names are the Flybase
gene ids used to label the elements of the ex GRangesList .

Exercise 13
Use glmFit to fit the general linear model. This function requires the input data
dge, the experimental design design, and the estimate of dispersion.

Use glmLRT to form the likelihood ratio test. This requires the original data
dge and the fitted model from the previous part of this question. Which coeffi-
cient of the design matrix do you wish to test?

Create a ‘top table’ of differentially represented genes using topTags.

Solution: Here we fit a generalized linear model to our data and experimental
design, using the tagwise dispersion estimate.

> fit <- glmFit(dge, design)

The fit can be used to calculate a likelihood ratio test, comparing the full
model to a reduced version with the second coefficient removed. The second
coefficient captures the difference between treated and untreated groups, and
the likelihood ratio test asks whether this term contributes meaningfully to the
overall fit.

> lrTest <- glmLRT(dge, fit, coef=2)

Here the topTags function summarizes results across the experiment.

> tt <- topTags(lrTest, n=10)

> tt[1:3,]
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Coefficient: Grouptreated

logFC logCPM LR PValue FDR

FBgn0039155 -4.7 6.0 542 5.9e-120 4.7e-116

FBgn0039827 -4.3 4.6 247 1.0e-55 4.0e-52

FBgn0029167 -2.2 8.2 211 6.6e-48 1.8e-44

As a ’sanity check’, summarize the original data for the first several probes,
confirming that the average counts of the treatment and control groups are
substantially different.

> sapply(rownames(tt$table)[1:4],

+ function(x) tapply(counts[x,], pData$Group, mean))

FBgn0039155 FBgn0039827 FBgn0029167 FBgn0034736

untreated 1576 554 6447 382

treated 64 31 1483 36

Annotation It is very easy to add annotations (mapping Entrez identifiers to
gene names, KEGG or GO pathways, etc) to top tables; see Section 7.

5.4 Gene set enrichment

Gene set enrichment approaches ask whether sets of genes are associated with a
treatment group. Sets are typically defined to represent genes in particular bio-
chemical or other pathways (e.g., from the KEGG or GO ontologies). Sets might
be more generally defined, e.g., to represent chromosomal regions; the MSigDB
(Molecular Signals data base) is one collection of diverse gene sets. Motivation
for gene set analysis might be that pathways offer greater biological relevant or
interpretability than individual genes, or that the cumulative effect of several
genes in a pathway may be statistically meaningful even though individual gene
contributions are not.

Gene set enrichment was first developed for microarray data, where a variety
of statistical approaches have been adopted; some of these are implemented in
Bioconductor, e.g., under the ‘Pathways’ and ‘GO’ BiocViews terms, or in the
limma package. A simple approach, developed in the Category package vignette,
calculates the average of t-statistics of genes within a gene set and compares this
with an appropriate null distribution. Another common approach (implemented
in the GOstats package) dichotomizes genes as ‘significant’ or not, and then uses
a hypergeometric test (perhaps correcting for the hierarchical nature of some
gene sets, e.g., in the GO classification) to assess whether significant genes are
over-represented in each set.

Application of gene set enrichment approaches to studies of RNA-seq differ-
ential representation is conceptually similar to gene set enrichment in microarray
analysis, but there are several important considerations [19]. Perhaps the most
important is that long or highly expressed genes receive many hits, and hence
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are associated with greater statistical power. The goseq package uses a data
base of known gene lengths to address this problem, as explored in the following
exercise.

Exercise 14
Explore gene set analysis in the context of RNA-seq data through the goseq
vignette. Can you think of alternative ways to address differences in statistical
power associated with gene length or expression? Are there other nuances of
RNA-seq data sets that should be taken into consideration?

5.5 Differential exon usage

The RNA-seq analysis outlined here has focused on perhaps the most straight-
forward research question – assessment of gene-level differential expression. Se-
quence data can deliver higher-resolution insight into gene expression. For in-
stance, one might hope to gain understanding of transcript-level differential
representation, or identify differential representation of novel transcripts. Novel
transcript identification has received a great deal of attention, but poses signif-
icant challenges beyond the scope of this workshop. Approaches to transcript
differential representation have often tried to combine estimation of transcript
abundance with assessment of differential representation. The approach ex-
plored here is different and, in some ways, more straight-forward; it is based on
the DEXSeq package.

DEXSeq starts with known gene models, rather than trying to quantify
abundance of unknown transcripts. The gene models consist of exons grouped
into transcripts, and transcripts grouped into genes; they can be retrieved from,
e.g., the UCSC genome browser or ENSEMBL (via biomaRt). The gene mod-
els are simplified to represent disjoint (non-overlapping) exonic regions. Such
regions may belong to one or several transcripts. Reads aligning to each region
are counted, and the counts used in an analysis that is similar to the gene-level
analysis of edgeR or DESeq. The analysis is modified, though, to incorporate
the gene model. Specifically, one asks whether there is a significant interac-
tion between treatment and exon use – do treatments differ in how exons are
represented? An affirmative answer provides indirect evidence that, since a par-
ticular exon is also represented differently between treatments, the transcript to
which the exon belongs is represented differently. The approach uses the same
statistical machinery as the edgeR or DESeq packages, so makes efficient use of
available data with appropriate assumptions about the error model.

Exercise 15
Explore exon usage through the DEXSeq vignette. Compare the merits and
challenges of this approach with, e.g., direct estimation of transcript abundance
and differential representation. How straight-forward is it to interpret results of
a DEXSeq analysis, in terms of differential transcript use? Under what exper-
imental circumstances might this approach be most profitably employed? Are
there any avenues for simplifying the analysis, e.g., in simplifying known gene
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models to capture just the splicing events differentiating transcripts (a tough
question; see [18]).
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6 ChIP-seq

6.1 Varieties of ChIP-seq

ChIP-seq and similar experiments combine chromosome immuno-precipitation
(ChIP) with sequence analysis. The idea is that the ChIP protocol enriches
genomic DNA for regions of interest, e.g., sites to which transcription factors are
bound. The regions of interest are then subject to high throughput sequencing,
the reads aligned to a reference genome, and the location of mapped reads
(‘peaks’) interpreted as indicators of the ChIP’ed regions. Reviews include those
by Park and colleagues [14, 6]; there is a large collection of peak-calling software,
some features of which are summarized in Pepke et al. [15].

Initial stages in a ChIP-seq analysis differ from RNA-seq in several impor-
tant ways. The ChIP protocol is more complicated and idiosyncratic than RNA-
seq protocols, and the targets of ChIP more variable in terms of sequence and
other characteristics. While RNA- and ChIP-seq use reads aligned to a refer-
ence genome, ChIP-seq protocols require that the aligned reads be processed to
identify peaks, rather than simply counted in known gene regions.

Many early ChIP-seq studies focused on characterizing one or a suite of
transcription factor binding sites across a small number of samples from one or
two groups. The main challenge was to develop efficient peak-calling software,
often tailored to the characteristics of the peaks of interest (e.g., narrow and
well-defined CTCF binding sites, vs. broad histone marks). More comprehen-
sive studies, e.g., in Drosophila [7], draw from multiple samples, e.g., in the
ENCODE project [13]. Decreasing sequence costs and better experimental and
data analytic protocols mean that these larger-scale studies are increasingly ac-
cessible to individual investigators. Peak-calling in this kind of study represents
an initial step, but interpretting analyses derived from multiple samples present
significant analytic challenges.

Bioconductor packages play a role in several stages of a ChIP-seq analysis.
(Table 9; a more comprehensive list is under the ChIPseq and HighThroughput-
Sequencing BiocViews terms). The ShortRead package can provide a quality
assessment report of reads. Following alignment, the chipseq package can be
used, in conjunction with ShortRead and GenomicRanges, to identify enriched
regions in a statistically informed and flexible way. DiffBind provides facilities
for comprehensive analysis of experiments with multiple ChIP-seq samples. The
ChIPpeakAnno package assists in annotating peaks in terms of known genes and
other genomic features. Pattern matching in Biostrings and specialized packages
such as MotIV can assist in motif identification.

Our attention is on analyzing multiple samples from a single experiment, and
identifying and annotating peaks. We start with a typical work flow re-iterating
key components in an exploration of data from the ENCODE project. An
‘advanced’ section then illustrates how exploratory or novel ChIP-seq algorithms
can be implemented in Bioconductor. The chapter concludes with more down-
stream analysis, including motif discovery and annotation.
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Table 9: Selected Bioconductor packages for RNA-seq analysis.

Package Description
qrqc Quality assessment; also ShortRead, chipseq.
PICS Peak calling, also mosaics, chipseq, ChIPseqR,

BayesPeak, nucleR (nucleosome positioning).
ChIPpeakAnno Peak annotation.
DiffBind Multiple-experiment analysis.
MotIV Motif identification and validation; also rGADEM .

6.2 A typical work flow: an ENCODE data set

In this section we use data from the ENCODE project to illustrate a typical
ChIP-seq work flow. The data is from GEO accession GSE30263, representing
ENCODE CTCF binding sites. CTCF is a zinc finger transcription factor.
It is a sequence specific DNA binding protein that functions as an insulator,
blocking enhancer activity, and possibly the spread of chromatin structure. The
original analysis involved Illumina ChIP-seq and matching ‘input’ lanes of 1 or
2 replicates from many cell lines. The GEO accession includes BAM files of
aligned reads, in addition to tertiary files summarizing identified peaks. We
focus on 15 cell lines aligned to hg19.

The main computational stages in the original work flow involved alignment
using Bowtie, followed by peak identification using an algorithm (‘HotSpots’,
[17]) originally developed for lower-throughput methodologies.

Initial quality assessment

Exercise 16
The SeattleIntro2012Data package contains a quality assessment report gener-
ated from the BAM files. View this report. Are there indications of batch or
other systematic effects in the data?

Solution: Here we visit the QA report.

> rpt <- system.file("GSE30263_qa_report", "index.html",

+ package="SeattleIntro2012")

> if (interactive())

+ browseURL(rpt)

Samples 1-15 correspond to replicate 1, 16-26 to replicate 2, and 27 through
41 the ‘input’ samples. Notice that overall nucleotide frequencies fall into three
distinct groups, and that samples 1-11 differ from the other input samples. The
‘Depth of Coverage’ portion of the report is particularly relevant for an early
assessment of ChIP-seq experiments.
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Peak calling with MACS We chose to perform an initial analysis with
MACS [20]. MACS is one of the earlier peak calling implementations; it is well-
described, based on reasonable principles, and relatively widely used. MACS
uses information about tags aligned to the plus and minus strand, allows for
Poisson-distributed local biases in peak density, and incorporates an appropri-
ately scaled input lane when available. We used MACS version 1.4.1 20110627,
with the following command line invocation

macs14 -t cellLineCTCP.bam -c cellLineControl.bam -n cellLine

The output from MACS include .bed files with the locations of all identified
summits, and tab-delimited files (labeled .xls) with the genomic coordinates
(start, end) of each peak. These commands were evaluated for all replicates of
all cell lines aligned to hg19.

We collated the output files with a goal of enumerating all peaks from all
files, but collapsing the coordinates of sufficiently similar peaks to a common
location. To do this, we created ranges of width 40bp, centered on each peak.
We identified overlapping ranges, over all samples, and collapsed these into a
single synthetic peak with width equal to the bounds of the overlapping ranges;
the DiffBind package offers a more structured approach to these steps. We then
re-organized the information on called peaks into a matrix. Rows of the matrix
represent distinct peaks. Columns of the matrix represent samples. Entries
in the matrix are the number of reads supporting the corresponding peak and
column, from the MACS estimate. The data is represented in a Summarized-
Experiment object; the script performing these operations is available

> script <- system.file("script", "chipseq_make_stam.R",

+ package="SeattleIntro2012Data")

Here we load the data as an R object stam (an abbreviation for the lab generating
the data).

> stamFile <-

+ system.file("data", "stam.Rda", package="SeattleIntro2012Data")

> load(stamFile)

> stam

class: SummarizedExperiment

dim: 369674 96

exptData(0):

assays(2): Tags PVals

rownames: NULL

rowData values names(0):

colnames(96): A549_1 A549_2 ... Wi38_1 Wi38_2

colData names(10): CellLine Replicate ... PeaksDate PeaksFile

Data exploration
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Exercise 17
Explore stam. Tabulate the number of peaks represented 1, 2, . . . , 96 times. We
expect replicates to have similar patterns of peak representation; do they?

Solution: Load the data and display the SummarizedExperiment instance. The
colData summarizes information about each sample, the rowData about each
peak. Use xtabs to summarize Replicate and CellLine representation within
colData(stam).

> head(colData(stam), 3)

DataFrame with 3 rows and 10 columns

CellLine Replicate TotTags TotPeaks Tags Peaks

<character> <factor> <integer> <integer> <numeric> <numeric>

A549_1 A549 1 1857934 50144 1569215 43119

A549_2 A549 2 2994916 77355 2881475 73062

Ag04449_1 Ag04449 1 5041026 81855 4730232 75677

FastqDate FastqSize PeaksDate

<Date> <numeric> <Date>

A549_1 2011-06-25 463 2011-06-25

A549_2 2011-06-25 703 2011-06-25

Ag04449_1 2010-10-22 368 2010-10-22

PeaksFile

<character>

A549_1 wgEncodeUwTfbsA549CtcfStdPkRep1.narrowPeak.gz

A549_2 wgEncodeUwTfbsA549CtcfStdPkRep2.narrowPeak.gz

Ag04449_1 wgEncodeUwTfbsAg04449CtcfStdPkRep1.narrowPeak.gz

> head(rowData(stam), 3)

GRanges with 3 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [10100, 10370] *

[2] chr1 [15640, 15790] *

[3] chr1 [16100, 16490] *

---

seqlengths:

chr1 chr2 chr3 chr4 ... chr22 chrX chrY

249250621 243199373 198022430 191154276 ... 51304566 155270560 59373566

> xtabs(~Replicate + CellLine, colData(stam))[,1:5]

CellLine

Replicate A549 Ag04449 Ag04450 Ag09309 Ag09319

1 1 1 1 1 1

2 1 1 1 1 1
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Figure 5: Hierarchical clustering of ENCODE samples.

Extract the Tags matrix from the assays. This is a standard R matrix . Test
which matrix elements are non-zero, tally these by row, and summarize the
tallies. This is the number of times a peak is detected, across each of the
samples

> m <- assays(stam)[["Tags"]] > 0 # peaks detected...

> peaksPerSample <- table(rowSums(m))

> head(peaksPerSample)

1 2 3 4 5 6

174574 35965 18939 12669 9143 7178

> tail(peaksPerSample)

91 92 93 94 95 96

1226 1285 1542 2082 2749 14695

To explore similarity between replicates, extract the matrix of counts. Trans-
form the counts using the asinh function (a log-like transform, except near 0;
are there other methods for transformation?), and use the ‘correlation’ distance
(cor.dist, from bioDist) to measure similarity. Cluster these using a hierarchi-
cal algorithm, via the hclust function.

> library(bioDist) # for cor.dist

> m <- asinh(assays(stam)[["Tags"]]) # transformed tag counts

> d <- cor.dist(t(m)) # correlation distance

> h <- hclust(d) # hierarchical clustering

Plot the result, as in Figure 5.

> plot(h, cex=.8, ann=FALSE)
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6.2.1 Peak calling with R / Bioconductor (advanced)

The following illustrates basic ChIP-seq in R. It is likely that these would be used
either in an exploratory way, or as foundations for developing work flows tailored
to particular ChIP experiments. We work through this section by developing
functions for different parts of the work flow. Functions are applied to examples
in an exercise at the end of this section.

Data input and pre-processing Here we develop our own function, named
chipPreprocess, to pre-process a single sample lane. The work flow starts
with data input. We suppose an available bamFile, with a ScanBamParam
object param defined to select regions we are interested in; thee bamFile and
param objects are defined later.

> aln <- readGappedAlignments(bamFile, param=param)

> seqlevels(aln) <- names(bamWhich(param))

> aln <- as(aln, "GRanges")

We use readGappedAlignments followed by coercion to a GRanges object as a
convenient way to retrieve a minimal amount of data from the BAM file, and
to manage reads whose alignments include indels; Rsamtools::scanBam is a more
flexible alternative. The seqlevels are adjusted to contain just the levels we
are interested in, rather than all levels in the BAM file (the default returned by
readGappedAlignments).

Sequence work flows typically filter reads to remove those that are optical
duplicates or otherwise flagged as invalid by the manufacturer. Many work
flows do not handle reads aligning to multiple locations in the genome. ChIP-
seq experiments often eliminate reads that are duplicated in the sense that more
than one read aligns to the same chromosome, strand, and start position; this
acknowledges artifacts of sample preparation. These filters are handled by dif-
ferent stages in a typical work flow – flagging optical duplicates and otherwise
suspect reads by the manufacturer or upstream software (illustrated in an exer-
cise, below); discarding multiply aligning reads by the aligner (in our case, using
the -m and -n options in Bowtie); and discarding duplicates as a pre-processing
step. Simple alignment de-duplication is

> aln <- aln[!duplicated(aln)]

It is common to estimate fragment length (e.g., via the ‘correlation’ method
[8], implemented in the chipseq package) and extend the 5’ tags by the estimated
length.

> fraglen <- estimate.mean.fraglen(aln, method="correlation")

> aln <- resize(aln, width=fraglen)

The end result can be summarized as a ‘coverage vector’ describing the number
of (extended) reads at each location in the genome; a run length encoding is an
efficient representation of this.

63

http://bioconductor.org/packages/release/bioc/html/chipseq.html


> coverage(aln)

These pre-processing steps can be summarized as a simple work-flow.

> chipPreprocess <- function(bamFile, param) {

+ aln <- readGappedAlignments(bamFile, param = param)

+ seqlevels(aln) <- names(bamWhich(param))

+ aln <- as(aln, "GRanges")

+ aln <- aln[!duplicated(aln)]

+ fraglen <- estimate.mean.fraglen(aln, method = "correlation")

+ aln <- resize(aln, width = fraglen)

+ coverage(aln)

+ }

Peak identification We now develop a function, findPeaks, to identify peaks.
The coverage vector is a very useful representation of the data, and numerous
peak discovery algorithms can be implemented on top of it. The chipseq package
implements a straight-forward approach. The first step uses the distribution of
singleton and doubleton islands to estimate a background Poisson noise distri-
bution, and hence to identify a threshold island elevation above which peaks
can be called at a specified false discovery rate.

> cutoff <- round(peakCutoff(cvg, fdr.cutoff=0.001))

Peaks are easily identified using slice

> slice(cvg, lower = cutoff)

resulting in a peak-finding work flow

> findPeaks <- function(cvg) {

+ cutoff <- round(peakCutoff(cvg, fdr.cutoff = 0.001))

+ slice(cvg, lower = cutoff)

+ }

Exercise 18
Walk through the work flow, from BAM file to called peaks, using the provided
BAM files. These are from the Ag09319 cell line, CTCF replicate 1 and input
lanes, filtered to include only reads from chromosome 6. Compare peaks found
in the ChIP and Input lanes, and in the MACS analysis. It is possible to pick
up the analysis after pre-processing by loading the cvgs object. It can be very
helpful to explore the data along the way; see the chipseq vignette for ideas.

Solution: Specify the location of the BAM files, and the location where the
coverage vectors will be saved.

> bamDir <- character() # TODO: read BAM file from...

> cvgsSaveFile <- character() # TODO: save coverage file to...
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Storing the coverage vectors represents a check-pointing strategy, making it easy
to resume an analysis if interrupted.

> library(GenomicRanges)

> bamFiles <- c(ChIP=file.path(bamDir,

+ "wgEncodeUwTfbsAg09319CtcfStdAlnRep1.bam"),

+ Input=file.path(bamDir,

+ "wgEncodeUwTfbsAg09319InputStdAlnRep1.bam"))

> stopifnot(all(file.exists(bamFiles)))

Create a ScanBamParam object specifying the regions of interest and other restric-
tions on reads to be input.

> chr6len <- scanBamHeader(bamFiles)[[1]][["targets"]][["chr6"]]

> param <- ScanBamParam(which=GRanges("chr6", IRanges(1, chr6len)),

+ what=character(),

+ flag=scanBamFlag(isDuplicate=FALSE,

+ isValidVendorRead=TRUE))

Process each BAM file using lapply, and save the result.

> cvgs <- lapply(bamFiles, chipPreprocess, param)

> save(cvgs, cvgsSaveFile)

Load the saved coverage file, and find peaks using the simple approach out-
lined above.

> library(chipseq)

> cvgsFile <- system.file("data", "chipseq_chr6_cvgs.Rda",

+ package="SeattleIntro2012Data")

> stopifnot(file.exists(cvgsFile))

> load(cvgsFile) # previously saved

> peaks <- lapply(cvgs, findPeaks)

Compare the peaks using GRanges commands (e.g. convert the peaks to
IRanges instances and use countOverlaps to identify peaks in common between
the ChIP and Input lanes), and the diffPeakSummary function from the chipseq
package. Compare the peaks to those found in the stam object.

> chip <- as(peaks[["ChIP"]][["chr6"]], "IRanges")

> inpt <- as(peaks[["Input"]][["chr6"]], "IRanges")

> table(countOverlaps(inpt, chip))

0 1 2

635 19 3

> table(countOverlaps(chip, inpt))

0 1 2

5534 23 1
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> stamFile <- system.file("data", "stam.Rda",

+ package="SeattleIntro2012Data")

> load(stamFile)

> stam0 <- stam[,"Ag09319_1"]

> idx <- seqnames(rowData(stam0)) == "chr6" &

+ assays(stam0)[["Tags"]] != 0

> rng <- ranges(rowData(stam0))[as.logical(idx)]

> table(countOverlaps(chip, rng))

0 1 2 3

811 4689 56 2

Our naive analysis finds many of the peaks identified by a more comprehensive
algorithm.

6.3 Comparison of multiple experiments: DiffBind

Exercise 19
Explore a ChIP-seq work flow through the DiffBind vignette.

6.4 Motifs

Transcription factors and other common regulatory elements often target spe-
cific DNA sequences (‘motifs’). These are often well-characterized, and can be
used to help identify, a priori, regions in which binding is expected. Known
binding motifs may also be used to identify promising peaks identified using de
novo peak discovery methods like MACS. This section explores use of known
binding motifs to characterize peaks; packages such as MotIV can assist in motif
discovery.

Known binding motifs The JASPAR data base curates known binding mo-
tifs obtained from the literature. A binding motif is summarized as a position
weight matrix PWM or position frequency matrix PFM. Rows of a PWM cor-
respond to nucleotides, columns to positions, and entries to the probability of
the nucleotide at that position. Each start position in a reference sequence can
be compared and scored for similarity to the PWM, and high-scoring positions
retained. A PFM is a similar representation, but with entries corresponding to
a count of the times a nucleotide is observed.

Exercise 20
Load needed packages. Biostrings can represent a PWM and score a reference
sequence. The BSgenome.Hsapiens.UCSC.hg19 package contains the hg19 build
of H. sapiens, retrieved from the UCSC genome browser. seqLogo and lattice
are used for visualization.

Retrieve the position frequency matrix (relative counts of nucleotides at each
position) MA0139.1.pfm from JASPAR, using the helper function getJASPAR

defined in the SeattleIntro2012 package. Visualize the PWM using seqLogo.

66

http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://jaspar.genereg.net
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html


Solution: Load the packages:

> library(Biostrings)

> library(BSgenome.Hsapiens.UCSC.hg19)

> library(seqLogo)

> library(lattice)

Retrieve the position weight matrix for CTCF, and display the PWM:

> pwm <- getJASPAR("MA0139.1.pfm") # SeattleIntro2012::getJASPAR

> seqLogo(scale(pwm, FALSE, colSums(pwm)))

Exercise 21
Use matchPWM to score the plus strand of chr1 for the CTCF PWM. Visualize the
distribution of scores using, e.g., densityplot, and summarize the high-scoring
matches (using consensusMatrix) as a seqLogo.

As an additional exercise, work up a short code segment to apply the PWM
to both strands (see ?PWM for some hints) and to all chromosomes.

Solution: Chromosome 1 can be loaded with Hsapiens[["chr1"]]; matchPWM
returns a ‘view’ of the high-scoring locations matching the PWM. Scores are
retrieved from the PWM and hits using PWMscoreStartingAt.

> chrid <- "chr1"

> hits <-matchPWM(pwm, Hsapiens[[chrid]]) # '+' strand

> scores <- PWMscoreStartingAt(pwm, subject(hits), start(hits))

The distribution of scores can be visualized with, e.g., densityplot from the
lattice package.

> densityplot(scores, xlim=range(scores), pch="|")

consensusMatrix applied to the views in hits returns a position frequency amtrix;
this can be plotted as a logo, with the result in Figure 6. Reassuringly, the found
sequences have a logo very similar to the expected.

> cm <- consensusMatrix(hits)[1:4,]

> seqLogo(makePWM(scale(cm, FALSE, colSums(cm))))

Exercise 22
We might expect that peaks found using de novo techniques like MACS would
be enriched for motifs identified for the known PWM. What fraction of our
high-scoring positions are in the peaks in the stam object? What technical and
biological issues might cloud this result?

Solution:
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Figure 6: CTCF position weight matrix from JASPAR (left) and on the plus
strand of chr1 (hits within 80% of maximum score, right).

> roi <- GRanges(chrid, ranges(hits), "+")

> seqinfo(roi) <- seqinfo(Hsapiens)

> sum(roi %in% rowData(stam)) / length(roi)

[1] 0.53

6.5 Annotation

For an introduction to annotation resources in Bioconductor, see Section 7.

Exercise 23
Annotating ChIP peaks is straight-forward. Load the ENCODE summary data,
select the peaks found in all samples, and use the center of these peaks as a
proxy for the true ChIP binding site. Use the transcript data base for the
UCSC Known Genes track of hg19 as a source for transcripts and transcription
start sites (TSS). Use nearest to identify the TSS that is nearest each peak,
and calculate the distance between the peak and TSS; measure distance taking
account of the strand of the transcript, so that peaks 5’ of the TSS have negative
distance. Summarize the locations of the peaks relative to the TSS.

Solution: Read in the ENCODE ChIP peaks for all cell lines.

> stamFile <-

+ system.file("data", "stam.Rda", package="SeattleIntro2012Data")

> load(stamFile)

Identify the rows of stam that have non-zero counts for all cell lines:
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> ridx <- rowSums(assays(stam)[["Tags"]] > 0) == ncol(stam)

Select the center of the ranges of these peaks, as a proxy for the ChIP binding
site:

> peak <- resize(rowData(stam)[ridx], width=1, fix="center")

Obtain the TSS from the TxDb.Hsapiens.UCSC.hg19.knownGene using the
transcripts function to extract coordinates of each transcript, and resize to a
width of 1 for the TSS; does this do the right thing for transcripts on the plus
and on the minus strand?

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> tx <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)

> tss <- resize(tx, width=1)

The nearest function returns the index of the nearest subject to each query

element; the distance between peak and nearest TSS is thus

> idx <- nearest(peak, tss)

> sgn <- as.numeric(ifelse(strand(tss)[idx] == "+", 1, -1))

> dist <- (start(peak) - start(tss)[idx]) * sgn

Here we summarize the distances as a simple table and density plot, focusing
on binding sites within 1000 bases of a transcription start site; the density plot
is in Figure 7.

> bound <- 1000

> ok <- abs(dist) < bound

> dist <- dist[ok]

> table(sign(dist))

-1 0 1

1262 4 707

> print(densityplot(dist[ok], plot.points=FALSE,

+ xlab="Distance to Nearest TSS"))

The distance to transcript start site is a useful set of operations, so let’s make
it a re-usable function

> distToTss <-

+ function(peak, tx)

+ {

+ tss <- resize(tx, width=1)

+ idx <- nearest(peak, tss)

+ sgn <- as.numeric(ifelse(strand(tss)[idx] == "+", 1, -1))

+ (start(peak) - start(tss)[idx]) * sgn

+ }
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Figure 7: Distance to nearest TSS amongst conserved peaks

Exercise 24
As an additional exercise, extract the sequences of all conserved peaks on ‘chr6’.
Do this using the BSgenome.Hsapiens.UCSC.hg19 package and getSeq function.
Use matchPWM to find sequences with a strong match to the JASPAR CTCF
PWM motif, and plot the density of distances to nearest transcription start site
for those with and without a match. What strategies are available for motif
discovery?

Solution: Here we select peaks on chromosome 6, and extract the DNA se-
quences corresponding to these peaks.

> library(BSgenome.Hsapiens.UCSC.hg19)

> pk6 <- peak[seqnames(peak) == "chr6"]

> seqs <- getSeq(Hsapiens, pk6, as.character=FALSE)

> head(seqs, 3)

A DNAStringSet instance of length 3

width seq

[1] 1 T

[2] 1 A

[3] 1 G

matchPWM operates on one DNA sequence at a time, so we arrange to search for
the PWM on each sequence using lapply. We identify sequences with a match
by testing the length of the returned object, and use this to create a density
plot.

> hits <- lapply(seqs, matchPWM, pwm=pwm)

> hasPwmMatch <- sapply(hits, length) > 0
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> dist <- distToTss(pk6, tx)

> ok <- abs(dist) < bound

> df <- data.frame(Distance = dist[ok], HasPwmMatch = hasPwmMatch[ok])

> print(densityplot(~Distance, group=HasPwmMatch, df,

+ plot.points=FALSE, xlim=c(-1, 1) * bound,

+ xlab="Distance to Nearest Tss",

+ auto.key=list(columns=2, title="Has PWM")))
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7 Annotation

7.1 Major types of annotation in Bioconductor

Bioconductor provides extensive annotation resources, summarized in Figure 8.
These can be gene-, or genome-centric. Annotations can be provided in packages
curated by Bioconductor, or obtained from web-based resources. Gene-centric
AnnotationDbi packages include:

• Organism level: e.g. org.Mm.eg.db.

• Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

• Homology level: e.g. hom.Dm.inp.db.

• System biology level: GO.db, KEGG.db, Reactome.db.

Examples of genome-centric packages include:

• GenomicFeatures, to represent genomic features, including constructing
reproducible feature or transcript data bases from file or web resources.

• Pre-built transcriptome packages, e.g. TxDb.Hsapiens.UCSC.hg19.knownGene
based on the H. sapiens UCSC hg19 knownGenes track.

• BSgenome for whole genome sequence representation and manipulation.

• Pre-built genomes, e.g., BSgenome.Hsapiens.UCSC.hg19 based on the H. sapi-
ens UCSC hg19 build.

Web-based resources include

• biomaRt to query biomart resource for genes, sequence, SNPs, and etc.

• rtracklayer for interfacing with browser tracks, especially the UCSC genome
browser.

7.2 Organism level packages

Organism-level (‘org’) packages uses a central gene identifier (e.g. Entrez Gene
id) and contain mappings between this identifier and other kinds of identifiers
(e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of
an org package is always of the form org.<Ab>.<efg>.db (e.g. org.Sc.sgd.db)
where <Ab> is a 2-letter abbreviation of the organism (e.g. Sc for Saccha-
romyces cerevisiae) and <efg> is an abbreviation (in lower-case) describing the
type of central identifier (e.g. sgd for gene identifiers assigned by the Saccha-
romyces Genome Database, or eg for Entrez gene ids). The How to use the ‘.db’
annotation packages vignette in the AnnotationDbi package (org packages are
only one type of “.db” annotation packages) is a key reference. The ‘.db’ and
most other Bioconductor annotation packages are updated every 6 months.
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Figure 8: Annotation Packages: the big picture

Exercise 25
What is the name of the org package for Drosophila? Load it.

Use ls("package:<pkgname>") to display the list of all symbols defined in this
package. Explore a few of the symbols by looking at their man page, at their
class, and by viewing their head with toTable.

Most maps can be reversed with revmap. Reverse the org.Dm.egUNIPROT map
and extract a few identifiers from the reversed map.

Solution:

> library(org.Dm.eg.db)

> head(ls('package:org.Dm.eg.db'), 3)

[1] "org.Dm.eg" "org.Dm.eg.db" "org.Dm.egACCNUM"

> org.Dm.egUNIPROT

UNIPROT map for Fly (object of class "AnnDbBimap")

> class(org.Dm.egUNIPROT)

[1] "AnnDbBimap"

attr(,"package")

[1] "AnnotationDbi"

> toTable(head(org.Dm.egUNIPROT, 3))

gene_id uniprot_id

1 30970 Q8IRZ0

2 30970 Q95RP8

3 30971 Q95RU8

4 30972 Q9W5H1
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Each map consists of left keys and right keys. The left keys are the Entrez gene
ids and the right keys the Uniprot accession numbers. For all maps in an org
package the left key is always the central gene id.

> toTable(head(revmap(org.Dm.egUNIGENE), 3))

gene_id unigene_id

1 30970 Dm.6474

2 30971 Dm.9

3 30972 Dm.12271

> identical(Lkeys(org.Dm.egUNIGENE), Lkeys(revmap(org.Dm.egUNIGENE)))

[1] TRUE

Recent versions of many annotation packakges allow a simpler way of ex-
tracting annotations. Annotation packages supporting these new methods con-
tain an object named after the package itself. These objects are collectively
called AnntoationDb objects, with more specific classes named OrgDb, ChipDb
or TranscriptDb objects. Methods that can be applied to these objects include
cols, keys, keytypes and select.

Exercise 26
Display the OrgDb object for the org.Dm.eg.db package.

Use the cols method to discover which sorts of annotations can be extracted
from it.

Use the keys method to extract UNIPROT identifiers and then pass those
keys in to the select method in such a way that you extract the SYMBOL (gene
symbol) and KEGG pathway information for each.

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in
the KEGG pathway 00310.

Solution: The OrgDb object is named org.Dm.eg.db.

> cols(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "ENZYME"

[6] "GENENAME" "MAP" "PATH" "PMID" "REFSEQ"

[11] "SYMBOL" "UNIGENE" "CHRLOC" "CHRLOCEND" "FLYBASE"

[16] "FLYBASECG" "FLYBASEPROT" "UNIPROT" "ENSEMBL" "ENSEMBLPROT"

[21] "ENSEMBLTRANS" "GO"

> keytypes(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "ENZYME"

[6] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[11] "UNIGENE" "FLYBASE" "FLYBASECG" "FLYBASEPROT" "UNIPROT"

[16] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GO"
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> uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))

> cols <- c("SYMBOL", "PATH")

> select(org.Dm.eg.db, keys=uniprotKeys, cols=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 Q8IRZ0 CG3038 <NA>

2 Q95RP8 CG3038 <NA>

3 Q95RU8 G9a 00310

4 Q9W5H1 CG13377 <NA>

5 P39205 cin <NA>

6 Q24312 ewg <NA>

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")

> nrow(kegg)

[1] 32

> head(kegg, 3)

PATH UNIPROT SYMBOL

1 00310 Q95RU8 G9a

2 00310 Q9W5E0 Suv4-20

3 00310 Q9W3N9 CG10932

Exercise 27
For convenience, lrTest, a DGEGLM object from the RNA-seq chapter, is in-
cluded in the SeattleIntro2012Data package. The following code loads this data
and create a ‘top table’ of the ten most differentially represented genes. This
top table is then cast as a data.frame.

> library(org.Dm.eg.db)

> data(lrTest)

> tt <- as.data.frame(topTags(lrTest))

Extract the Flybase gene identifiers (FLYBASE) from the row names of this
table and map them to their corresponding Entrez gene (ENTREZID) and symbol
ids (SYMBOL) using select. Use merge to add the results of select to the top
table.

Solution:

> fbids <- rownames(tt)

> cols <- c("ENTREZID", "SYMBOL")

> anno <- select(org.Dm.eg.db, fbids, cols, "FLYBASE")

> ttanno <- merge(tt, anno, by.x=0, by.y="FLYBASE")

> dim(ttanno)
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[1] 10 8

> head(ttanno, 3)

Row.names logConc logFC LR.statistic PValue FDR ENTREZID SYMBOL

1 FBgn0000071 -11 2.8 183 1.1e-41 1.1e-38 40831 Ama

2 FBgn0024288 -12 -4.7 179 7.1e-41 6.3e-38 45039 Sox100B

3 FBgn0033764 -12 3.5 188 6.8e-43 7.8e-40 <NA> <NA>

7.3 Transcript annotations and sequence data bases

Genome-centric packages are very useful for annotations involving genomic co-
ordinates. It is straight-forward, for instance, to discover the coordinates of
coding sequences in regions of interest, and from these retrieve corresponding
DNA or protein coding sequences. Other examples of the types of operations
that are easy to perform with genome-centric annotations include defining re-
gions of interest for counting aligned reads in RNA-seq experiments (Section 5)
and retrieving DNA sequences underlying regions of interest in ChIP-seq anal-
yses (Section 6), e.g., for motif characterization.

Exercise 28
Load the ‘transcript.db’ package relevant to the dm3 build of D. melanogaster.
Use select and friends to select the Flybase gene ids of the top table tt and the
Flybase transcript names (TXNAME) and Entrez gene identifiers (GENEID).

Use cdsBy to extract all coding sequences, grouped by transcript. Subset
the coding sequences to contain just the transcripts relevant to the top table.
How many transcripts are there? What is the structure of the first transcript’s
coding sequence?

Load the ‘BSgenome’ package for the dm3 build of D. melanogaster. Use
the coding sequences ranges of the previous part of this exercise to extract the
underlying DNA sequence, using the extractTranscriptsFromGenome function.
Use Biostrings’ translate to convert DNA to amino acid sequences.

Solution: The following loads the relevant Transcript.db package, and creates
a more convenient alias to the TranscriptDb instance defined in the package.

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

We can discover available keys (using keys) and columns (cols) in txdb, and
then use select to retrieve the transcripts associated with each differentially
expressed gene. The mapping between gene and transcript is not one-to-one –
some genes have more than one transcript.

> txnm <- select(txdb, fbids, "TXNAME", "GENEID")

> nrow(txnm)

76

http://bioconductor.org/packages/release/bioc/html/Biostrings.html


[1] 19

> head(txnm, 3)

GENEID TXNAME

1 FBgn0039155 FBtr0084549

2 FBgn0039827 FBtr0085755

3 FBgn0039827 FBtr0085756

The TranscriptDb instances can be queried for data that is more structured than
simple data frames, and in particular return GRanges or GRangesList instances
to represent genomic coordinates. These queries are performed using cdsBy

(coding sequence), transcriptsBy (transcripts), etc., where a function argument
by specifies how coding sequences or transcripts are grouped. Here we extract
the coding sequences grouped by transcript, returning the transcript names, and
subset the resulting GRangesList to contain just the transcripts of interest to
us. The first transcript is composed of 6 distinct coding sequence regions.

> cds <- cdsBy(txdb, "tx", use.names=TRUE)[txnm$TXNAME]

> length(cds)

[1] 19

> cds[1]

GRangesList of length 1:

$FBtr0084549

GRanges with 6 ranges and 3 elementMetadata cols:

seqnames ranges strand | cds_id cds_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr3R [19970946, 19971592] + | 55167 <NA> 2

[2] chr3R [19971652, 19971770] + | 55168 <NA> 3

[3] chr3R [19971831, 19972024] + | 55169 <NA> 4

[4] chr3R [19972088, 19972461] + | 55170 <NA> 5

[5] chr3R [19972523, 19972589] + | 55171 <NA> 6

[6] chr3R [19972918, 19973094] + | 55172 <NA> 7

---

seqlengths:

chr2L chr2LHet chr2R chr2RHet ... chrXHet chrYHet chrM

23011544 368872 21146708 3288761 ... 204112 347038 19517

The following code loads the appropriate BSgenome package; the Dmelanogaster

object refers to the whole genome sequence represented in this package. The
remaining steps extract the DNA sequence of each transcript, and translates
these to amino acid sequences. Issues of strand are handled correctly.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> txx <- extractTranscriptsFromGenome(Dmelanogaster, cds)

> length(txx)
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[1] 19

> head(txx, 3)

A DNAStringSet instance of length 3

width seq names

[1] 1578 ATGGGCAGCATGCAAGTGGCGCT...TGCAGATCAAGTGCAGCGACTAG FBtr0084549

[2] 2760 ATGCTGCGTTATCTGGCGCTTTC...TTGCTGCCCCATTCGAACTTTAG FBtr0085755

[3] 2217 ATGGCACTCAAGTTTCCCACAGT...TTGCTGCCCCATTCGAACTTTAG FBtr0085756

> head(translate(txx), 3)

A AAStringSet instance of length 3

width seq

[1] 526 MGSMQVALLALLVLGQLFPSAVANGSSSYSSTST...VLDDSRNVFTFTTPKCENFRKRFPKLQIKCSD*

[2] 920 MLRYLALSEAGIAKLPRPQSRCYHSEKGVWGYKP...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

[3] 739 MALKFPTVKRYGGEGAESMLAFFWQLLRDSVQAN...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

7.4 Using biomaRt

The biomaRt package offers access to the online biomart resource. this consists
of several data base resources, referred to as ‘marts’. Each mart allows access
to multiple data sets; the biomaRt package provides methods for mart and data
set discovery, and a standard method getBM to retrieve data.

Exercise 29
Load the biomaRt package and list the available marts. Choose the ensembl
mart and list the datasets for that mart. Set up a mart to use the ensembl mart
and the hsapiens gene ensembl dataset.

A biomaRt dataset can be accessed via getBM. In addition to the mart to be
accessed, this function takes filters and attributes as arguments. Use filterOp-

tions and listAttributes to discover values for these arguments. Call getBM

using filters and attributes of your choosing.

Solution:

> library(biomaRt)

> head(listMarts(), 3) ## list the marts

> head(listDatasets(useMart("ensembl")), 3) ## mart datasets

> ensembl <- ## fully specified mart

+ useMart("ensembl", dataset = "hsapiens_gene_ensembl")

> head(listFilters(ensembl), 3) ## filters

> myFilter <- "chromosome_name"

> head(filterOptions(myFilter, ensembl), 3) ## return values

> myValues <- c("21", "22")

> head(listAttributes(ensembl), 3) ## attributes
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> myAttributes <- c("ensembl_gene_id","chromosome_name")

> ## assemble and query the mart

> res <- getBM(attributes = myAttributes, filters = myFilter,

+ values = myValues, mart = ensembl)

Use head(res) to see the results.
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8 Annotation of Variants

This work flow uses the VariantAnnotation package to annotate genetic variants.
Sample data included in the package are a subset of chromosome 22 from the
1000 Genomes project. Variant Call Format (VCF; full description) text files
contain meta-information lines, a header line with column names, data lines with
information about a position in the genome, and optional genotype information
on samples for each position.

Data are read from a VCF file and variants identified according to region
such as coding, intron, intergenic, spliceSite etc. Amino acid coding changes
are computed for the non-synonymous variants. SIFT and PolyPhen databases
provide predictions of how severely the coding changes affect protein function.

8.1 Variant Call Format (VCF) files

Import data Data are parsed into a VCF object with readVcf.

> library(VariantAnnotation)

> fl <- system.file("extdata", "chr22.vcf.gz",

+ package="VariantAnnotation")

> (vcf <- readVcf(fl, "hg19"))

class: VCF

dim: 10376 5

genome: hg19

exptData(1): header

fixed(4): REF ALT QUAL FILTER

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

rownames(10376): rs7410291 rs147922003 ... rs144055359 rs114526001

rowData values names(1): paramRangeID

colnames(5): HG00096 HG00097 HG00099 HG00100 HG00101

colData names(1): Samples

Header information can be explored with the fixed, info and geno accessors,
e.g.,

> (hdr <- exptData(vcf)$header)

class: VCFHeader

samples(5): HG00096 HG00097 HG00099 HG00100 HG00101

meta(1): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

> head(info(hdr), 3)
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DataFrame with 3 rows and 3 columns

Number Type Description

<character> <character> <character>

LDAF 1 Float MLE Allele Frequency Accounting for LD

AVGPOST 1 Float Average posterior probability from MaCH/Thunder

RSQ 1 Float Genotype imputation quality from MaCH/Thunder

rowData contains information in the the CHROM, POS, and ID fields of the VCF
file, represented as a GRanges instance (the paramRangeID is discussed further
below).

> head(rowData(vcf), 3)

GRanges with 3 ranges and 1 elementMetadata col:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

rs7410291 22 [50300078, 50300078] * | <NA>

rs147922003 22 [50300086, 50300086] * | <NA>

rs114143073 22 [50300101, 50300101] * | <NA>

---

seqlengths:

22

NA

The REF, ALT, QUAL and FILTER fields can be accessed together with fixed

accessor or individually with ref, alt, qual and filt accessors, e.g.,

> head(fixed(vcf), 3)

GRanges with 3 ranges and 5 elementMetadata cols:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

rs7410291 22 [50300078, 50300078] * | <NA>

rs147922003 22 [50300086, 50300086] * | <NA>

rs114143073 22 [50300101, 50300101] * | <NA>

REF ALT QUAL FILTER

<DNAStringSet> <DNAStringSetList> <numeric> <character>

rs7410291 A ######## 100 PASS

rs147922003 C ######## 100 PASS

rs114143073 G ######## 100 PASS

---

seqlengths:

22

NA

Genotype data described in the FORMAT field are parsed into matrices or arrays
and can be accessed with the geno accessor.
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> geno(hdr)

DataFrame with 3 rows and 3 columns

Number Type Description

<character> <character> <character>

GT 1 String Genotype

DS 1 Float Genotype dosage from MaCH/Thunder

GL . Float Genotype Likelihoods

> geno(vcf)

SimpleList of length 3

names(3): GT DS GL

> geno(vcf)$GT[1:3,1:5]

HG00096 HG00097 HG00099 HG00100 HG00101

rs7410291 "0|0" "0|0" "1|0" "0|0" "0|0"

rs147922003 "0|0" "0|0" "0|0" "0|0" "0|0"

rs114143073 "0|0" "0|0" "0|0" "0|0" "0|0"

Import data subsets When working with large VCF files it may be more
efficient to read in subsets of the data. This can be accomplished by selecting
genomic coordinates (ranges) or by specific fields from the VCF file.

> rng <- GRanges(seqnames="22", ranges=IRanges(

+ start=c(50301422, 50989541),

+ end=c(50312106, 51001328),

+ names=c("gene_79087", "gene_644186")))

When ranges are specified, the VCF file must have an accompanying Tabix index
file; if one does not exist it must be created. See ?indexTabix for help creating
an index.

> tab <- TabixFile(fl)

> (vcf_rng <- readVcf(tab, "hg19", rng))

class: VCF

dim: 397 5

genome: hg19

exptData(1): header

fixed(4): REF ALT QUAL FILTER

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): DS GL GT

rownames(397): rs114335781 rs8135963 ... rs144055359 rs114526001

rowData values names(1): paramRangeID

colnames(5): HG00096 HG00097 HG00099 HG00100 HG00101

colData names(1): Samples
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The paramRangesID column now has meaning as it distinguishes which variant
records came from which param range.

> head(rowData(vcf_rng), 3)

GRanges with 3 ranges and 1 elementMetadata col:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

rs114335781 22 [50301422, 50301422] * | gene_79087

rs8135963 22 [50301476, 50301476] * | gene_79087

22:50301488 22 [50301488, 50301488] * | gene_79087

---

seqlengths:

22

NA

Data can also be subset on the fixed, info and geno fields in the VCF file.
Fields available for import are described in the header information. To view the
header before reading the data, use ScanVcfHeader.

> hdr <- scanVcfHeader(fl)

> ## e.g., INFO and GENO fields

> head(info(hdr) , 3)

DataFrame with 3 rows and 3 columns

Number Type Description

<character> <character> <character>

LDAF 1 Float MLE Allele Frequency Accounting for LD

AVGPOST 1 Float Average posterior probability from MaCH/Thunder

RSQ 1 Float Genotype imputation quality from MaCH/Thunder

> head(geno(hdr), 3)

DataFrame with 3 rows and 3 columns

Number Type Description

<character> <character> <character>

GT 1 String Genotype

DS 1 Float Genotype dosage from MaCH/Thunder

GL . Float Genotype Likelihoods

To subset on ”LDAF” and ”GT” we specify them as character vectors in the
info and geno arguments to ScanVcfParam. This creates a ScanVcfParam object
which is used as the param argument to readVcf.

> ## Return all 'fixed' fields, "LAF" from 'info' and "GT" from 'geno'
> svp <- ScanVcfParam(info="LDAF", geno="GT")

> vcf1 <- readVcf(fl, "hg19", svp)

> names(geno(vcf1))
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[1] "GT"

It is easy to examine the contents of a VCF file. For instance, let’s compare
quality measures between novel (i.e., not in dbSNP) and known (i.e., in dbSNP)
variants and the variant types present in the file. Variants with membership
in dbSNP can be identified by using the appropriate SNPlocs package for hg19
and the snpFilt filter function.

> library(SNPlocs.Hsapiens.dbSNP.20101109)

> snpFilt <- dbSNPFilter("SNPlocs.Hsapiens.dbSNP.20101109")

> dbsnprd <- renameSeqlevels(rowData(vcf), c("22"="ch22"))

> dbsnpchr22 <- snpFilt(dbsnprd, subset=FALSE)

> table(dbsnpchr22)

dbsnpchr22

FALSE TRUE

6126 4250

Create a data frame of quality measures of interest. . .

> metrics <- data.frame(QUAL=values(fixed(vcf))$QUAL,

+ inDbSNP=dbsnpchr22, VT=values(info(vcf))$VT,

+ LDAF=values(info(vcf))$LDAF, RSQ=values(info(vcf))$RSQ)

and visualize the distribution of qualities using ggplot2. For instance, genotype
imputation quality is higher for the known variants in dbSNP (Figure 9).

> library(ggplot2)

> ggplot(metrics, aes(RSQ, fill=inDbSNP)) +

+ geom_density(alpha=0.5) +

+ scale_x_continuous(name="MaCH / Thunder Imputation Quality") +

+ scale_y_continuous(name="Density") +

+ opts(legend.position="top")

8.2 Locating variants in and around genes

Variant location with respect to genes can be identified with the locateVari-

ants function. Regions are specified in the region argument and can be one
of the following constructors: CodingVariants(), IntronVariants(), FiveUTR-

Variants(), ThreeUTRVariants(), IntergenicVariants(), SpliceSiteVariants(),
or AllVariants(). Location definitions are shown in Table 10.

For overlap methods to work properly the chromosome names (seqlevels)
must be compatible in the objects being compared. The VCF data chromo-
some names are represented by number, i.e. ’22’, but the TxDb chromosome
names are preceded with ’chr’. Modify the seqlevels in the VCF object with
renameSeqlevels.
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Figure 9: Quality scores of variants in dbSNP, compared to those not in dbSNP.

Table 10: Variant locations

Location Details
coding Within a coding region
fiveUTR Within a 5’ untranslated region
threeUTR Within a 3’ untranslated region
intron Within an intron region
intergenic Not within a transcript associated with a gene
spliceSite Overlaps any of the first or last 2 nucleotides of an intron
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> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> vcf <- renameSeqlevels(vcf, c("22"="chr22"))

> rd <- rowData(vcf)

> loc <- locateVariants(rd, txdb, CodingVariants())

> head(loc, 3)

GRanges with 3 ranges and 5 elementMetadata cols:

seqnames ranges strand | location queryID

<Rle> <IRanges> <Rle> | <factor> <integer>

rs114335781 chr22 [50301422, 50301422] * | coding 24

rs8135963 chr22 [50301476, 50301476] * | coding 25

22:50301488 chr22 [50301488, 50301488] * | coding 26

txID cdsID geneID

<integer> <integer> <character>

rs114335781 76833 225251 79087

rs8135963 76833 225251 79087

22:50301488 76833 225251 79087

---

seqlengths:

chr22

NA

To answer gene-centric questions data can be summarized by gene regardless
of transcript.

> ## Did any coding variants match more than one gene?

> splt <- split(values(loc)$geneID, values(loc)$queryID)

> table(sapply(splt, function(x) length(unique(x)) > 1))

FALSE TRUE

956 15

> ## Summarize the number of coding variants by gene ID

> splt <- split(values(loc)$queryID, values(loc)$geneID)

> head(sapply(splt, function(x) length(unique(x))), 3)

113730 1890 23209

22 15 30

8.3 Amino acid coding changes

predictCoding computes amino acid coding changes for non-synonymous vari-
ants. Only ranges in query that overlap with a coding region in subject are
considered. Reference sequences are retrieved from either a BSgenome or fasta
file specified in seqSource. Variant sequences are constructed by substituting,
inserting or deleting values in the varAllele column into the reference sequence.
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Amino acid codes are computed for the variant codon sequence when the length
is a multiple of 3.

The query argument to predictCoding can be a GRanges or VCF. When a
GRanges is supplied the varAllele argument must be specified. In the case
of a VCF, the alternate alleles are taken from values(alt(<VCF>))$ALT and the
varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding
regions. Each row represents a variant-transcript match so more than one row
per original variant is possible.

> library(BSgenome.Hsapiens.UCSC.hg19)

> coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)

> coding[5:9]

GRanges with 5 ranges and 13 elementMetadata cols:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

22:50301584 chr22 [50301584, 50301584] - | <NA>

rs114264124 chr22 [50302962, 50302962] - | <NA>

rs149209714 chr22 [50302995, 50302995] - | <NA>

22:50303554 chr22 [50303554, 50303554] - | <NA>

rs12167668 chr22 [50303561, 50303561] - | <NA>

varAllele cdsLoc proteinLoc queryID

<DNAStringSet> <IRanges> <CompressedIntegerList> <integer>

22:50301584 A [777, 777] 259 28

rs114264124 A [698, 698] 233 57

rs149209714 C [665, 665] 222 58

22:50303554 G [652, 652] 218 73

rs12167668 A [645, 645] 215 74

txID cdsID geneID consequence refCodon

<character> <integer> <character> <factor> <DNAStringSet>

22:50301584 76833 225251 79087 synonymous CCG

rs114264124 76833 225252 79087 nonsynonymous CGG

rs149209714 76833 225252 79087 nonsynonymous GGA

22:50303554 76833 225253 79087 nonsynonymous ATC

rs12167668 76833 225253 79087 synonymous CCG

varCodon refAA varAA

<DNAStringSet> <AAStringSet> <AAStringSet>

22:50301584 CCA P P

rs114264124 CAG R Q

rs149209714 GCA G A

22:50303554 GTC I V

rs12167668 CCA P P

---

seqlengths:

chr22

NA
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Using variant rs114264124 as an example, we see varAllele A has been sub-
stituted into the refCodon CGG to produce varCodon CAG. The refCodon is the
sequence of codons necessary to make the variant allele substitution and there-
fore often includes more nucleotides than indicated in the range (i.e. the range
is 50302962, 50302962, width of 1). Notice it is the second position in the re-

fCodon that has been substituted. This position in the codon, the position of
substitution, corresponds to genomic position 50302962. This genomic position
maps to position 698 in coding region-based coordinates and to triplet 233 in
the protein. This is a non-synonymous coding variant where the amino acid has
changed from R (Arg) to Q (Gln).

When the resulting varCodon is not a multiple of 3 it cannot be translated.
The consequence is considered a frameshift and varAA will be missing.

> coding[values(coding)$consequence == "frameshift"]

GRanges with 1 range and 13 elementMetadata cols:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

22:50317001 chr22 [50317001, 50317001] + | <NA>

varAllele cdsLoc proteinLoc queryID

<DNAStringSet> <IRanges> <CompressedIntegerList> <integer>

22:50317001 GCACT [808, 808] 270 359

txID cdsID geneID consequence refCodon

<character> <integer> <character> <factor> <DNAStringSet>

22:50317001 76834 225263 79174 frameshift GCC

varCodon refAA varAA

<DNAStringSet> <AAStringSet> <AAStringSet>

22:50317001 ACC A

---

seqlengths:

chr22

NA

8.4 SIFT and PolyPhen Databases

From predictCoding we identified the amino acid coding changes for the non-
synonymous variants. For this subset we can retrieve predictions of how damag-
ing these coding changes may be. SIFT (Sorting Intolerant From Tolerant) and
PolyPhen (Polymorphism Phenotyping) are methods that predict the impact of
amino acid substitution on a human protein. The SIFT method uses sequence
homology and the physical properties of amino acids to make predictions about
protein function. PolyPhen uses sequence-based features and structural infor-
mation characterizing the substitution to make predictions about the structure
and function of the protein.

Collated predictions for specific dbSNP builds are available as downloads
from the SIFT and PolyPhen web sites. These results have been packaged
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into SIFT.Hsapiens.dbSNP132.db and PolyPhen.Hapiens.dbSNP131.db and are
designed to be searched by rsid. Variants that are in dbSNP can be searched
with these database packages. When working with novel variants, SIFT and
PolyPhen must be called directly. See references for home pages.

Identify the non-synonymous variants and obtain the rsids.

> nms <- names(coding)

> idx <- values(coding)$consequence == "nonsynonymous"

> nonsyn <- coding[idx]

> names(nonsyn) <- nms[idx]

> rsids <- unique(names(nonsyn)[grep("rs", names(nonsyn), fixed=TRUE)])

Detailed descriptions of the database columns can be found with ?SIFTDbColumns

and ?PolyPhenDbColumns. Variants in these databases often contain more than
one row per variant. The variant may have been reported by multiple sources
and therefore the source will differ as well as some of the other variables.

> library(SIFT.Hsapiens.dbSNP132)

> ## rsids in the package

> head(keys(SIFT.Hsapiens.dbSNP132), 3)

[1] "rs10000692" "rs10001580" "rs10002700"

> ## list available columns

> cols(SIFT.Hsapiens.dbSNP132)

[1] "RSID" "PROTEINID" "AACHANGE" "METHOD" "AA"

[6] "PREDICTION" "SCORE" "MEDIAN" "POSTIONSEQS" "TOTALSEQS"

> ## select a subset of columns

> ## a warning is thrown when a key is not found in the database

> subst <- c("RSID", "PREDICTION", "SCORE", "AACHANGE", "PROTEINID")

> sift <- select(SIFT.Hsapiens.dbSNP132, keys=rsids, cols=subst)

> head(sift, 3)

RSID PROTEINID AACHANGE PREDICTION SCORE

1 rs114264124 NP_077010 R233Q TOLERATED 0.59

2 rs114264124 NP_077010 R233Q TOLERATED 1.00

3 rs114264124 NP_077010 R233Q TOLERATED 0.20

PolyPhen provides predictions using two different training datasets and has
considerable information about 3D protein structure. See ?PolyPhenDbColumns

or the PolyPhen web site listed in the references for more details.
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A Appendix: data retrieval

A.1 RNA-seq data retrieval

The following script was used to retrieve a portion of the Pasilla data set from
the short read archive. The data is very large; extraction relies on installation
of the SRA SDK, available from the Short Read Archive.

> library(RCurl)

> srasdk <- "/home/mtmorgan/bin/sra_sdk-2.0.1" # local installation

> sra <- "ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByExp/sra"

> expt <- "SRX/SRX014/SRX014458/"

> url <- sprintf("%s/%s", sra, expt)

> acc <- strsplit(getURL(url, ftplistonly=TRUE), "\n")[[1]]

> urls <- sprintf("%s%s/%s.sra", url, acc, acc)

> for (fl in urls)

+ system(sprintf("wget %s", fl), wait=FALSE, ignore.stdout=TRUE)

> app <- sprintf("%s/bin64/fastq-dump", srasdk)

> for (fl in file.path(wd, basename(urls)))

+ system(sprintf("%s %s", app, fl), wait=FALSE)

A.2 ChIP-seq data retrieval and MACS analysis

BAM and called peak files were obtained from http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs. The script used to pro-
cess called peak data into the stam object is at

> file.path("script", "chipseq-stam-called-peaks.R",

+ package="SeattleIntro2012Data")

[1] "script/chipseq-stam-called-peaks.R/SeattleIntro2012Data"
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