
Practical: Ranges

Martin Morgan (mtmorgan@fhcrc.org)

27-28 February, 2014

Contents

1 Working with ranges 1
1.1 Selecting gene sequences . 6
1.2 Summarizing overlaps . 7

1 Working with ranges

Start by loading the GenomicRanges package and defining the plotRanges helper function

Ranges describe both features of interest (e.g., genes, exons, promoters) and reads aligned to the genome.
Bioconductor has very powerful facilities for working with ranges, some of which are summarized in Table˜1. These
are implemented in the GenomicRanges package; see [1] for a more comprehensive conceptual orientation.

The GRanges class Instances of GRanges are used to specify genomic coordinates. Suppose we wish to
represent two D.˜melanogaster genes. The first is located on the positive strand of chromosome 3R, from posi-
tion 19967117 to 19973212. The second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962306, and right-most base at 18962925. The coordinates are 1-based (i.e., the first nucleotide on a chromo-
some is numbered 1, rather than 0), left-most (i.e., reads on the minus strand are defined to ‘start’ at the left-most
coordinate, rather than the 5’ coordinate), and closed (the start and end coordinates are included in the range; a
range with identical start and end coordinates has width 1, a 0-width range is represented by the special construct
where the end coordinate is one less than the start coordinate). A complete definition of these genes as GRanges
is:

Table 1: Selected Bioconductor packages for representing and manipulating ranges, strings, and other data struc-
tures.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and methods (e.g.,

findOverlaps, countOverlaps) for representing and manipulating ranges of
consecutive values. Also introduces DataFrame, SimpleList and other classes
tailored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges,
GRangesList), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., representing
coordinates and organization of exons and transcripts of known genes.

1

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html

Practical: Ranges 2

genes <- GRanges(seqnames=c("chr3R", "chrX"),

ranges=IRanges(

start=c(19967117, 18962306),

end = c(19973212, 18962925)),

strand=c("+", "-"),

seqlengths=c(chr3R=27905053, chrX=22422827))

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would define a
data.frame. The start and end coordinates are grouped into an IRanges instance. The optional seqlengths
argument specifies the maximum size of each sequence, in this case the lengths of chromosomes 3R and X in the
‘dm2’ build of the D.˜melanogaster genome. This data is displayed as
genes

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr3R [19967117, 19973212] +

[2] chrX [18962306, 18962925] -

seqlengths:

chr3R chrX

27905053 22422827

The GRanges class has many useful methods defined on it. Consult the help page
?GRanges

and package vignettes

vignette(package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with accessors for getting and updating
information.

genes[2]

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chrX [18962306, 18962925] -

seqlengths:

chr3R chrX

27905053 22422827

strand(genes)

factor-Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

width(genes)

[1] 6096 620

length(genes)

[1] 2

Practical: Ranges 3

Figure 1: Ranges

names(genes) <- c("FBgn0039155", "FBgn0085359")

genes # now with names

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 chr3R [19967117, 19973212] +

FBgn0085359 chrX [18962306, 18962925] -

seqlengths:

chr3R chrX

27905053 22422827

strand returns the strand information in a compact representation called a run-length encoding. The ‘names’ could
have been specified when the instance was constructed; once named, the GRanges instance can be subset by
name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges class by adding information about
seqnames, strand, and other information particularly relevant to representing ranges that are on genomes. The
IRanges class and related data structures (e.g., RangedData) are meant as a more general description of ranges
defined in an arbitrary space. Many methods implemented on the GRanges class are ‘aware’ of the consequences
of genomic location, for instance treating ranges on the minus strand differently (reflecting the 5’ orientation im-
posed by DNA) from ranges on the plus strand.

Operations on ranges The GRanges class has many useful methods. We use IRanges to illustrate these
operations to avoid complexities associated with strand and seqnames, but the operations are comparable on
GRanges. We begin with a simple set of ranges:

ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure˜1 and summarized in Table˜2.

Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank, narrow, reflect, resize, restrict,
and shift, among others. An illustration is shift, which translates each range by the amount specified by
the shift argument. Positive values shift to the right, negative to the left; shift can be a vector, with each
element of the vector shifting the corresponding element of the IRanges instance. Here we shift all ranges to
the right by 5, with the result illustrated in the middle panel of Figure˜1.

Practical: Ranges 4

shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include disjoin, reduce, gaps, and
range. An illustration is reduce, which reduces overlapping ranges into a single range, as illustrated in the
lower panel of Figure˜1.

reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges overlap individual positions. Rather
than returning ranges, coverage returns a compressed representation (run-length encoding)

cvg <- coverage(ir)

cvg

integer-Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

plot(as.integer(cvg), type="s", xlab="Coordinate", ylab="Depth of coverage")

The run-length encoding can be interpreted as ‘a run of length 6 of nucleotides covered by 0 ranges, followed
by a run of length 2 of nucleotides covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These include intersect, setdiff, union,
pintersect, psetdiff, and punion.
The countOverlaps and findOverlaps functions operate on two sets of ranges. countOverlaps takes its
first argument (the query) and determines how many of the ranges in the second argument (the subject)
each overlaps. The result is an integer vector with one element for each member of query. findOverlaps

performs a similar operation but returns a more general matrix-like structure that identifies each pair of query
/ subject overlaps. Both arguments allow some flexibility in the definition of ‘overlap’.

Adding mcols and metadata The GRanges class (actually, most of the data structures defined or extending those
in the IRanges package) has two additional very useful data components. The mcols function allows information on
each range to be stored and manipulated (e.g., subset) along with the GRanges instance. The element metadata
is represented as a DataFrame, defined in IRanges and acting like a standard R data.frame but with the ability to
hold more complicated data structures as columns (and with element metadata of its own, providing an enhanced
alternative to the Biobase class AnnotatedDataFrame).

mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),

Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is in the form of a list; any data can
be provided.

metadata(genes) <- list(CreatedBy="A. User", Date=date())

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html

Practical: Ranges 5

Table 2: Common operations on IRanges, GRanges and GRangesList.
Category Function Description
Accessors start, end, width Get or set the starts, ends and widths

names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x
shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

The GRangesList class The GRanges class is extremely useful for representing simple ranges. Some next-
generation sequence data and genomic features are more hierarchically structured. A gene may be represented by
several exons within it. An aligned read may be represented by discontinuous ranges of alignment to a reference.
The GRangesList class represents this type of information. It is a list-like data structure, which each element of
the list itself a GRanges instance. The ENSEMBL genes identified earlier can be represented as a GRangesList.
GRangesList of length 6:

$84929

GRanges with 10 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr9 [133777825, 133779710] - | 132272 <NA>

[2] chr9 [133780621, 133780800] - | 132273 <NA>

[3] chr9 [133787179, 133787275] - | 132274 <NA>

[4] chr9 [133799131, 133799267] - | 132275 <NA>

[5] chr9 [133799624, 133799783] - | 132276 <NA>

[6] chr9 [133804954, 133805433] - | 132277 <NA>

[7] chr9 [133806160, 133806183] - | 132278 <NA>

Practical: Ranges 6

[8] chr9 [133813923, 133814035] - | 132279 <NA>

[9] chr9 [133813923, 133814239] - | 132280 <NA>

[10] chr9 [133814390, 133814455] - | 132281 <NA>

##

$8140

GRanges with 10 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

[1] chr16 [87863629, 87866631] - | 215168 <NA>

[2] chr16 [87868020, 87868197] - | 215169 <NA>

[3] chr16 [87870104, 87870253] - | 215170 <NA>

[4] chr16 [87871451, 87871547] - | 215171 <NA>

[5] chr16 [87872320, 87872423] - | 215172 <NA>

[6] chr16 [87873308, 87873431] - | 215173 <NA>

[7] chr16 [87874035, 87874079] - | 215174 <NA>

[8] chr16 [87874656, 87874761] - | 215175 <NA>

[9] chr16 [87885330, 87885455] - | 215176 <NA>

[10] chr16 [87902491, 87903100] - | 215177 <NA>

##

...

<4 more elements>

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

The GRangesList object has methods one would expect for lists (e.g., length, sub-setting). Many of the methods
introduced for working with IRanges are also available, with the method applied element-wise.

1.1 Selecting gene sequences

Exercise 1
This exercise uses annotation packages to go from gene identifiers to coding sequences.

a. Map from an informal gene SYMBOL, e.g., BRCA1, to ENTREZID gene identifiers using the org.Hs.eg.db
package and the select function, use the TxDb.Hsapiens.UCSC.hg19.knownGene package and a second
map to go from ENTREZID to TXNAME.

b. Extract the coding sequence grouped by transcript using the TxDb.Hsapiens.UCSC.hg19.knownGene pack-
age and cdsBy function; select just those transcripts we are interested in.

c. Retrieve the nucleotide sequence from the BSgenome.Hsapiens.UCSC.hg19 package using the function
extractTranscriptsFromGenome.

d. Verify that the coding sequences are all multiples of 3, and translate from nucleotide to amino acid sequence.

Solution: Map from gene SYMBOL to ENTREZID, and from ENTREZID to TXNAME and extract the releveant
coding sequence, grouped by transcript

library(org.Hs.eg.db)

egid <- select(org.Hs.eg.db, "BRCA1", "ENTREZID", "SYMBOL")$ENTREZID

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

egToTx <- select(txdb, egid, "TXNAME", "GENEID")

Warning: ’select’ resulted in 1:many mapping between keys and return rows

cdsByTx <- cdsBy(txdb, "tx", use.names=TRUE)[egToTx$TXNAME]

http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html

Practical: Ranges 7

Retrieve the sequence

library(BSgenome.Hsapiens.UCSC.hg19)

txx <- extractTranscriptsFromGenome(Hsapiens, cdsByTx)

Warning: ’extractTranscriptsFromGenome’ is deprecated.

Use ’extractTranscriptSeqs’ instead.

See help("Deprecated")

Warning: ’extractTranscripts’ is deprecated.

Use ’extractTranscriptSeqs’ instead.

See help("Deprecated")

Translate to amino acid sequence

all(width(txx) %% 3 == 0) # sanity check

[1] TRUE

translate(txx) # amino acid sequence

A AAStringSet instance of length 20

width seq

[1] 760 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...MCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY*

[2] 1793 MSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFA...MCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY*

[3] 174 MDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKM...MCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY*

[4] 700 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...CCYGPFTNMPTGCPPNCGCAARCLDRGQWLPCNWADV*

[5] 1817 MLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEE...MCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY*

...

[16] 1365 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

[17] 1365 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

[18] 1318 MLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEE...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

[19] 1339 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTK...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

[20] 1069 MNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTP...SESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNL

1.2 Summarizing overlaps

Exercise 2
A basic operation in RNA-seq and other work flows is to count the number of times aligned reads overlap features
of interest.

a. Load the RNAseqData.HNRNPC.bam.chr14 experiment data package and get the paths to the BAM files it
contains.

b. Load the ‘transcript db’ package that contains the coordinates of each exon of the UCSC ’known genes’ track
of hg19.

c. Extract the exon coordinates grouped by gene; the result is an GRangesList object that we will discuss more
latter.

d. Use the summarizeOverlaps function with the exon coordinates and BAM files to generate a count of the
number of reads overlapping each gene. Visit the help page ?summarizeOverlaps to read about the counting
strategy used.

e. The counts can be extracted from the return value of summarizeOverlaps using the function assay. This is
standard R matrix. How many reads overlapped regions of interest in each sample? How many genes had
non-zero counts?

Solution: Point to BAM files

http://bioconductor.org/packages/release/data/experiment/html/RNAseqData.HNRNPC.bam.chr14.html

Practical: Ranges 8

library(RNAseqData.HNRNPC.bam.chr14)

fls <- RNAseqData.HNRNPC.bam.chr14_BAMFILES

Get the gene model; this could also come from, e.g., a GFF or GTF file.

library(BiocParallel)

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

ex <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")

Summarize the number of reads overlapping each region of interest

counts <- summarizeOverlaps(ex, fls)

colSums(assay(counts))

ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304 ERR127305

340669 373302 371666 331540 313817 331160 331639 329672

sum(rowSums(assay(counts)) != 0)

[1] 528

References

[1] Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carlson, Robert Gentleman,
Martin˜T. Morgan, and Vincent˜J. Carey. Software for computing and annotating genomic ranges. PLoS
Comput Biol, 9(8):e1003118, 08 2013. URL: http://dx.doi.org/10.1371%2Fjournal.pcbi.1003118, doi:
10.1371/journal.pcbi.1003118.

http://dx.doi.org/10.1371%2Fjournal.pcbi.1003118
http://dx.doi.org/10.1371/journal.pcbi.1003118
http://dx.doi.org/10.1371/journal.pcbi.1003118

	1 Working with ranges
	1.1 Selecting gene sequences
	1.2 Summarizing overlaps

