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1 Philosophy

MASTis an R/Bioconductor package for managing and analyzing qPCR and sequencing-based single–cell gene expression
data, as well as data from other types of single–cell assays. Our goal is to support assays that have multiple features
(genes, markers, etc) per well (cell, etc) in a flexible manner. Assays are assumed to be mostly complete in the sense that
most wells contain measurements for all features.

1.1 Internals

A SingleCellAssay object can be manipulated as a matrix, with rows giving wells and columns giving features.

1.2 Statistical Testing

Apart from reading and storing single–cell assay data, the package also provides functionality for significance testing of
differential expression using a combined binomial and normal–theory likelihood ratio test, as well as filtering of individual
outlier wells. These methods are described our papers.

2 Examples

With the cursory background out of the way, we’ll proceed with some examples to help understand how the package is
used.

2.1 Reading Data

Data can be imported in a Fluidigm instrument-specific format (the details of which are undocumented, and likely subject-
to-change) or some derived, annotated format, or in “long” (melted) format, in which each row is a measurement, so if
there are N wells and M cells, then the data.frame should contain N ×M rows. The use of key–value mappings makes
the reading of various input formats very flexible, provided that they contain the minimal required information expected
by the package.

For example, the following data set was provided in as a comma-separated value file. It has the cycle threshold (ct)
recorded. Non-detected genes are recorded as NAs. For the Fluidigm/qPCR single cell expression functions to work as
expected, we must use the expression threshold, defined as et = cmax − ct, which is proportional to the log-expression.

Below, we load the package and the data, then compute the expression threshold from the ct, and construct a
FluidigmAssay.

library(MAST)

library(data.table)

## data.table 1.9.4 For help type: ?data.table

## *** NB: by=.EACHI is now explicit. See README to restore previous behaviour.

library(plyr)

##

## Attaching package: ’plyr’

##
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## The following object is masked from ’package:MAST’:

##

## summarize

##

## The following objects are masked from ’package:reshape’:

##

## rename, round any

data(vbeta)

colnames(vbeta)

## [1] "Sample.ID" "Subject.ID" "Experiment.Number"

## [4] "Chip.Number" "Stim.Condition" "Time"

## [7] "Population" "Number.of.Cells" "Well"

## [10] "Gene" "Ct"

vbeta <- computeEtFromCt(vbeta)

vbeta.fa <- FluidigmAssay(vbeta, idvars=c("Subject.ID", "Chip.Number", "Well"),

primerid='Gene', measurement='Et', ncells='Number.of.Cells',

geneid="Gene", cellvars=c('Number.of.Cells', 'Population'),

phenovars=c('Stim.Condition','Time'), id='vbeta all')

show(vbeta.fa)

## FluidigmAssay on layer Et

## 1 Layers; 456 wells; 75 features

## id: vbeta all

We see that the variable vbeta is a data.frame from which we construct the FluidigmAssay object. The idvars

is the set of column(s) in vbeta that uniquely identify a well (globally), the primerid is a column(s) that specify the
feature measured at this well. The measurement gives the column name containing the log-expression measurement,
ncells contains the number of cells (or other normalizing factor) for the well. geneid, cellvars, phenovars all specify
additional columns to be included in the featureData, phenoData and cellData (TODO: wellData). The output is a
FluidigmAssay object with 456 wells and 75 features.

We can access the feature–level metadata and the cell–level metadata using the fData and cData accessors.

head(fData(vbeta.fa),3)

## primerid Gene

## B3GAT1 B3GAT1 B3GAT1

## BAX BAX BAX

## BCL2 BCL2 BCL2

head(cData(vbeta.fa),3)

## Number.of.Cells Population wellKey Subject.ID

## Sub01 1 A01 1 CD154+VbetaResponsive Sub01 1 A01 Sub01

## Sub01 1 A02 1 CD154+VbetaResponsive Sub01 1 A02 Sub01

## Sub01 1 A03 1 CD154+VbetaResponsive Sub01 1 A03 Sub01

## Chip.Number Well Stim.Condition Time ncells

## Sub01 1 A01 1 A01 Stim(SEB) 12 1

## Sub01 1 A02 1 A02 Stim(SEB) 12 1

## Sub01 1 A03 1 A03 Stim(SEB) 12 1

We see this gives us the set of genes measured in the assay, or the cell-level metadata (i.e. the number of cells
measured in the well, the population this cell belongs to, the subject it came from, the chip it was run on, the well id, the
stimulation it was subjected to, and the timepoint for the experiment this cell was part of). The wellKey are concatenated
idvars columns, helping to ensure consistency when splitting and merging MASTobjects. TODO: Some of this “cell–level”
information could arguably be part of the @phenoData slot of the object. This functionality is forthcoming but doesn’t
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limit what can be done with the package at this stage.

2.2 Subsetting, splitting, combining

It’s possible to subset MASTobjects by wells and features. Square brackets (“[”) will index on the first index and by features
on the second index. Integer and boolean and indices may be used, as well as character vectors naming the cellKey or the
feature (via the primerid). There is also a subset method, which will evaluate its argument in the frame of the cData,
hence will subset by wells.

sub1 <- vbeta.fa[1:10,]

show(sub1)

## FluidigmAssay on layer Et

## 1 Layers; 10 wells; 75 features

## id: vbeta all

sub2 <- subset(vbeta.fa, Well=='A01')

show(sub2)

## FluidigmAssay on layer Et

## 1 Layers; 5 wells; 75 features

## id: vbeta all

sub3 <- vbeta.fa[1:10,6:10]

show(sub3)

## FluidigmAssay on layer Et

## 1 Layers; 10 wells; 5 features

## id: vbeta all

cellData(sub3)

## An object of class 'AnnotatedDataFrame'

## rowNames: Sub01 1 A01 Sub01 1 A02 ... Sub01 1 A10 (10 total)

## varLabels: Number.of.Cells Population ... ncells (9 total)

## varMetadata: labelDescription

featureData(sub3)

## An object of class 'AnnotatedDataFrame'

## rowNames: CCL4 CCL5 ... CCR5 (5 total)

## varLabels: primerid Gene

## varMetadata: labelDescription

The cellData and featureData AnnotatedDataFrames are subset accordingly as well.
A MASTmay be split into a list of MAST, which is known as an SCASet. The split method takes an argument which

names the column (factor) on which to split the data. Each level of the factor will be placed in its own MASTwithin the
SCASet.

sp1 <- split(vbeta.fa, 'Subject.ID')

show(sp1)

## SCASet of size 2

## Samples Sub01, Sub02

The splitting variable can either be a character vector naming column(s) of the MAST, or may be a factor or list of
factors.

It’s possible to combine MASTobjects or an SCASet with the combine method.
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combine(x=sp1[[1]],y=sp1[[2]])

## Note: method with signature ’DataLayer#DataLayer’ chosen for function ’combine’,

## target signature ’SingleCellAssay#SingleCellAssay’.

## "SingleCellAssay#ANY" would also be valid

## FluidigmAssay on layer Et

## 1 Layers; 456 wells; 75 features

## id: Sub01

combine(sp1)

## FluidigmAssay on layer Et

## 1 Layers; 456 wells; 75 features

## id: Sub01

2.2.1 Modifying the cellData or featureData

Combine also can take a vector or data.frame or AnnotatedDataFrame and append it to the cellData or featureData.
The number of rows must match the number of wells or number of features, and determines to which component the
argument will be appended.

newData <- data.frame(otherVariable=rnorm(nrow(vbeta.fa)))

vbetaWithNewData <- combine(vbeta.fa, newData)

head(cData(vbetaWithNewData))

## Number.of.Cells Population wellKey Subject.ID

## Sub01 1 A01 1 CD154+VbetaResponsive Sub01 1 A01 Sub01

## Sub01 1 A02 1 CD154+VbetaResponsive Sub01 1 A02 Sub01

## Sub01 1 A03 1 CD154+VbetaResponsive Sub01 1 A03 Sub01

## Sub01 1 A04 1 CD154+VbetaResponsive Sub01 1 A04 Sub01

## Sub01 1 A05 1 CD154+VbetaResponsive Sub01 1 A05 Sub01

## Sub01 1 A06 1 CD154+VbetaResponsive Sub01 1 A06 Sub01

## Chip.Number Well Stim.Condition Time ncells otherVariable

## Sub01 1 A01 1 A01 Stim(SEB) 12 1 1.9002508

## Sub01 1 A02 1 A02 Stim(SEB) 12 1 -2.3759292

## Sub01 1 A03 1 A03 Stim(SEB) 12 1 1.4444909

## Sub01 1 A04 1 A04 Stim(SEB) 12 1 -2.3648527

## Sub01 1 A05 1 A05 Stim(SEB) 12 1 -0.3063874

## Sub01 1 A06 1 A06 Stim(SEB) 12 1 0.9867860

2.3 Filtering

We can filter and perform some significance tests on the MAST. We may want to filter any wells with at least two outlier
cells where the discrete and continuous parts of the signal are at least 9 standard deviations from the mean. This is a
very conservative filtering criteria. We’ll group the filtering by the number of cells.

We’ll split the assay by the number of cells and look at the concordance plot after filtering.

vbeta.split<-split(vbeta.fa,"Number.of.Cells")

#see default parameters for plotSCAConcordance

plotSCAConcordance(vbeta.split[[1]],vbeta.split[[2]],

filterCriteria=list(nOutlier = 1, sigmaContinuous = 9,

sigmaProportion = 9))

## Sum of Squares before Filtering: 14.95

## After filtering: 12.4

## Difference: 2.54
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The filtering function has several other options, including whether the filter shuld be applied (thus returning a new
SingleCellAssay object) or returned as a matrix of boolean values.

vbeta.fa

## FluidigmAssay on layer Et

## 1 Layers; 456 wells; 75 features

## id: vbeta all

## Split by 'ncells', apply to each component, then recombine

vbeta.filtered <- filter(vbeta.fa, groups='ncells')

## Returned as boolean matrix

was.filtered <- filter(vbeta.fa, apply_filter=FALSE)

## Wells filtered for being discrete outliers

head(subset(was.filtered, pctout))

## intout null pctout

## Sub01 1 D05 FALSE TRUE TRUE

## Sub01 1 D06 FALSE TRUE TRUE

## Sub01 1 D07 FALSE TRUE TRUE

## Sub01 1 D08 FALSE TRUE TRUE

## Sub01 1 D10 FALSE TRUE TRUE

## Sub01 1 D11 FALSE TRUE TRUE

There’s also some functionality for visualizing the filtering.

burdenOfFiltering(vbeta.fa, 'ncells', byGroup=TRUE)
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2.4 Significance testing under the Hurdle model

There are two frameworks available in the package. The first framework zlm offers a full linear model to allow arbitrary
comparisons and adjustment for covariates. The second framework LRT can be considered essentially performing t-tests
(respecting the discrete/continuous nature of the data) between pairs of groups. LRT is subsumed by the first framework,
but might be simpler for some users, so has been kept in the package.

We’ll describe zlm. Models are specified in terms of the variable used as the measure and covariates present in the
cellData using symbolic notation, just as the lm function in R.

vbeta.1 <- subset(vbeta.fa, ncells==1)

## Consider the first 20 genes

vbeta.1 <- vbeta.1[,1:20]

layername(vbeta.1)

## [1] "Et"

head(cData(vbeta.1))

## Number.of.Cells Population wellKey Subject.ID

## Sub01 1 A01 1 CD154+VbetaResponsive Sub01 1 A01 Sub01

## Sub01 1 A02 1 CD154+VbetaResponsive Sub01 1 A02 Sub01

## Sub01 1 A03 1 CD154+VbetaResponsive Sub01 1 A03 Sub01

## Sub01 1 A04 1 CD154+VbetaResponsive Sub01 1 A04 Sub01

## Sub01 1 A05 1 CD154+VbetaResponsive Sub01 1 A05 Sub01

## Sub01 1 A06 1 CD154+VbetaResponsive Sub01 1 A06 Sub01

## Chip.Number Well Stim.Condition Time ncells

## Sub01 1 A01 1 A01 Stim(SEB) 12 1

## Sub01 1 A02 1 A02 Stim(SEB) 12 1

## Sub01 1 A03 1 A03 Stim(SEB) 12 1

## Sub01 1 A04 1 A04 Stim(SEB) 12 1

## Sub01 1 A05 1 A05 Stim(SEB) 12 1

## Sub01 1 A06 1 A06 Stim(SEB) 12 1
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Now, for each gene, we can regress on Et the factors Population and Subject.ID.
In each gene, we’ll fit a Hurdle model with a separate intercept for each population and subject. A an S4 object of

class “ZlmFit” is returned, containing slots with the genewise coefficients, variance-covariance matrices, etc.

library(ggplot2)

library(reshape)

library(abind)

zlm.output <- zlm.SingleCellAssay(~ Population + Subject.ID, vbeta.1, method='glm',

ebayes=TRUE)

show(zlm.output)

## Fitted zlm on 20 genes and 413 cells.

## Using GLMlike ~ Population + Subject.ID

## returns a data.table with a summary of the fit

coefAndCI <- summary(zlm.output, logFC=FALSE)

coefAndCI <- coefAndCI[contrast != '(Intercept)',]

coefAndCI[,contrast:=abbreviate(contrast)]

## Fitted zlm with top 2 genes per contrast:

## ( Wald Z-scores on discrete )

## primerid PCD154+VR PCD154+VU PCD154- PpVR PpVU S.ID

## CCR7 -6.3* -4.7* -4.0* -2.4* -3.2* 2.9*

## CD28 -1.6 -3.8* -3.2* 0.2 -0.6 -1.8

## CD3g -1.3 -1.8 0.9 2.0* 1.3* 1.5

## CD4 -0.5 -2.6 -2.2 1.3 -0.6 -3.7*

## CD40LG 5.1* -0.3 -1.1 1.7 1.2 -1.8

ggplot(coefAndCI, aes(x=contrast, y=coef, ymin=ci.lo, ymax=ci.hi, col=component))+

geom_pointrange(position=position_dodge(width=.5)) +facet_wrap(~primerid) +

theme(axis.text.x=element_text(angle=45, hjust=1)) + coord_cartesian(ylim=c(-3, 3))
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Try ?ZlmFit-class or showMethods(classes='ZlmFit') to see a full list of methods.
The combined test for differences in proportion expression/average expression is found by calling a likelihood ratio test

on the fitted object. An array of genes, metrics and test types is returned. We’ll plot the -log10 P values by gene and test
type.

zlm.lr <- lrTest(zlm.output, 'Population')

## Refitting on reduced model...

## .

## Done!

dimnames(zlm.lr)

## $primerid

## [1] "B3GAT1" "BAX" "BCL2" "CCL2" "CCL3" "CCL4" "CCL5"

## [8] "CCR2" "CCR4" "CCR5" "CCR7" "CD109" "CD27" "CD28"

## [15] "CD38" "CD3d" "CD3g" "CD4" "CD40LG" "CD45"

##

## $test.type

## [1] "cont" "disc" "hurdle"

##
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## $metric

## [1] "lambda" "df" "Pr(>Chisq)"

pvalue <- ggplot(melt(zlm.lr[,,'Pr(>Chisq)']), aes(x=primerid, y=-log10(value)))+

geom_bar(stat='identity')+facet_wrap(~test.type) + coord_flip()

print(pvalue)
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In fact, the zlm framework is quite general, and has wrappers for a variety of modeling functions that accept glm-like
arguments to be used, such as mixed models (using lme4) and Bayesian regression models (using arm). Multicore support
is offered by setting options(mc.cores=4), or however many cores your system has.

library(lme4)

lmer.output <- zlm.SingleCellAssay(~ Stim.Condition +(1|Subject.ID), vbeta.1,
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method='glmer')

2.5 Two-sample Likelihood Ratio Test

Another way to test for differential expression is available through the LRT function, which is analogous to two-sample T
tests.

##

## Attaching package: ’car’

##

## The following object is masked from ’package:MAST’:

##

## logit

two.sample <- LRT(vbeta.1, 'Population', referent='CD154+VbetaResponsive')

car::some(two.sample)

## Population test.type primerid direction lrstat

## 2 CD154-VbetaResponsive comb BAX 1 1.584786

## 12 CD154-VbetaResponsive comb CD109 -1 15.462219

## 18 CD154-VbetaResponsive comb CD4 1 6.623668

## 22 CD154-VbetaUnresponsive comb BAX -1 2.176129

## 63 VbetaResponsive comb BCL2 1 8.161731

## 67 VbetaResponsive comb CCL5 -1 6.355926

## 69 VbetaResponsive comb CCR4 -1 1.730697

## 72 VbetaResponsive comb CD109 -1 21.365997

## 83 VbetaUnresponsive comb BCL2 1 6.241355

## 97 VbetaUnresponsive comb CD3g 1 24.266413

## p.value

## 2 4.527601e-01

## 12 4.389569e-04

## 18 3.644927e-02

## 22 3.368679e-01

## 63 1.689284e-02

## 67 4.167045e-02

## 69 4.209049e-01

## 72 2.293151e-05

## 83 4.412726e-02

## 97 5.377934e-06

Here we compare each population (CD154-VbetaResponsive, CD154+VbetaUnresponsive, CD154-VbetaUnresponsive,
VbetaResponsive, VbetaUnresponsive) to CD154+VbetaResponsive. The Population column shows which population is
being compared, while test.type is comb for the combined normal theory/binomial test. Column primerid gives the
gene being tested, direction shows if the comparison group mean is greater (1) or less (-1) than the referent group, and
lrtstat and p.value give the test statistic and χ2 p-value (two degrees of freedom).

Other options are whether additional information about the tests are returned (returnall=TRUE) and if the testing
should be stratified by a character vector naming columns in cData containing grouping variables (groups).

These tests have been subsumed by zlm.SingleCellAssay but remain in the package for user convenience.

3 Use with single cell RNA-sequencing data

In RNA-sequencing data is essentially no different than qPCR-based single cell gene expression, once it has been aligned
and mapped, if one is willing to reduce the experiment to counts or count-like data for a fixed set of genes/features. We
assume that suitable tools (eg, SAMseq or TopHat) have been applied to do this.

**More details on convenience functions for RNAseq data**
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4 Implementation Details

Here we provide some background on the implementation of the package.
There are several fundamental new object types provided by the package. DataLayer is the base class, which is

provides an array-like object to store tabular data that might have multiple derived representations. A SingleCellAssay

object contains a DataLayer, plus cell and feature data. New types of single cell assays can be incorportated by extending
SingleCellAssay.

Different derived classes of MASTrequire different fields to be present in the cellData and featureData These require-
ments are set for each class by the slots cmap and fmap, giving required columns in cell and feature data, respectively.

We have found it useful to enforce naming conventions to reduce confusion when combining data across projects, so
the constructor will rename the fields the user provides to match the values specifed in cmap and fmap.

Sets of single cell assays are stored in the SCASet class. A constructor for SCASet is provided to construct an SCASet
directly from a data frame. Alternatively, a SingleCellAssay or derived class can be split on an arbitray variable to
produce an SCASet.

On construction of a SingleCellAssay object, the package tests for completeness, and will fill in the missing data
(with NA) if it is not, so assays with lots of missing data can make reading marginally slower.
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