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Single-cell RNA-seq

Sandberg (2014). Nature Methods
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Single-cell signal is noisy

Owens (2012). Nature
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Single-cell data let us ask new questions

Wagner, Regev, Yosef (2016). Nature Biotechnology
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Single-cell data meets big data

Svensson, Vento-Tormo, Teichmann (2018). Nature Protocols
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Single-cell meets big data

• BRAIN Initiative “mini” brain atlas
• 340,000 cells and nuclei from the Mouse Primary Motor Cortex
• Plans to sequence 3M cells for the whole brain (less than 1%).

• The Human Cell Atlas “preview” dataset
• 530,000 cells from umbilical cord blood and bone marrow
• Millions expected “soon”.
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A typical workflow
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The SingleCellExperiment class

11 / 88



The SingleCellExperiment class

sce

## class: SingleCellExperiment
## dim: 3079 1000
## metadata(1): log.exprs.offset
## assays(2): counts logcounts
## rownames(3079): ENSG00000188976 ENSG00000187608 ...
## ENSG00000198727 ENSG00000220023
## rowData names(12): ENSEMBL_ID Symbol_TENx ... total_counts
## log10_total_counts
## colnames(1000): Cell1 Cell2 ... Cell999 Cell1000
## colData names(56): Sample Barcode ...
## pct_counts_in_top_200_features_mito
## pct_counts_in_top_500_features_mito
## reducedDimNames(2): PCA zinbwave
## spikeNames(0):
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Resources

• A step-by-step workflow for low-level analysis of single-cell
RNA-seq data with Bioconductor

• https://f1000research.com/articles/5-2122/v2
• Bioconductor workflow for single-cell RNA sequencing

• https://f1000research.com/articles/6-1158/v1
• github.com/seandavi/awesome-single-cell
• scrna-tools.org
• Seurat

• https://satijalab.org/seurat/
• Bioconductor workshop materials

• https://bioconductor.org/help/course-materials/
• Orchestrating Single Cell Analysis review

• https://www.biorxiv.org/content/10.1101/590562v1.abstract
• https://osca.bioconductor.org
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Statistical Inference

Statistical inference is the process of learning some properties of the
population starting from a sample drawn from this population.

For instance, we may be interested in learning about the difference
in the gene expression of immune cells among cancer patients, but
we cannot measure the whole population.

We can however measure the expression of a random sample of the
population and then infer or generalize the results to the entire
population.
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Statistical Inference

There are some terms that we need to define.

• The data generating distribution is the unknown probability
distribution that generates the data.
• The empirical distribution is the observable distribution of the
data in the sample.

We are usually interested in a function of the data generating
distribution. This is often referred to as parameter (or the
parameter of interest).

We use the sample to estimate the parameter of interest, using a
function of the empirical distribution, referred to as estimator.
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Data generating distribution

The data generating distribution is unknown.

However, we can make some assumptions about it. These
assumptions are sometimes based on domain knowledge or on
mathematical convenience.

One commonly used strategy is to assume a family of distributions
for the data generating distribution, for instance the Gaussian
distribution.
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Data generating distribution for RNA-seq

The sequencing process can be seen as a simple random sampling of
the reads along the genome.

Hence, if we sequence a total number w of reads, we can model the
number of reads mapped to a gene j as

Xj ∼ Bi(w, pj = θj lj),

where pj is proportional to the number of RNA copies for gene j
(θj) and to its length (lj).

Since w is big and pj is small, the binomial is well approximated by
the Poisson distribution

Xj ∼ Poi(λ = w θj lj)
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Poisson approximation
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Overdispersion

The Poisson distribution has one important property:

E[Y ] = V ar(Y ) = λ.

Because of biological variability, RNA-seq counts exhibit higher
variance, leading to overdispersion.
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Overdispersion
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The negative binomial distribution

For any µ ≥ 0 and φ > 0, the probability mass function (PMF) of
the negative binomial (NB) distribution is

fNB(y;µ, φ) = Γ(y + φ−1)
Γ(y + 1)Γ(φ−1)

( 1
1 + µφ

)φ−1 (
µ

µ+ φ−1

)y
, ∀y ∈ N.

The mean of the NB distribution is µ and its variance is:

V ar(Y ) = µ+ φµ2.

In particular, the NB distribution boils down to a Poisson
distribution when φ→ 0.
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Interpretation in the context of RNA-seq

The negative binomial can be derived as a Gamma-Poisson mixture.

Y |λ ∼ Poi(λ)

e
λ ∼ Ga

( 1
φ
,

1
φµ

)
hence

Y ∼ NB(µ, φ).
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Interpretation in the context of RNA-seq

In other words,

• λij can be interpreted as the true (unobserved) value of gene j
in sample i;
• For each gene j, λij varies between samples according to a
Gamma distribution (biological variation).
• The observed counts, Yij are the results of biological variation
+ technical variation due to the sequencing process, which can
be modeled as a Poisson.
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Interpretation in the context of RNA-seq

Recall the the variance function can be written as

V (µ) = µ+ φµ2.

Dividing for the square of the expected value, we obtain the square
of the coefficient of variation.

CV 2 = 1
µ

+ φ.

CV 2 can be interpreted as the sum of two terms:

• The first, given by the Poisson distribution, describes technical
variability and tends to 0 as we sequence more reads;
• The second, which does not depend on the mean, represents
biological variability.
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Interpretation in the context of RNA-seq

1e−01 1e+01 1e+03 1e+05

1e
−

01
1e

+
08

Mean gene expression level (log10 scale)

V
ar

ia
nc

e 
(lo

g1
0 

sc
al

e)

x xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxx
xxxxxxxxx

xx
x

27 / 88



Enters single-cell RNA-seq
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Single-cell data have more zeros than bulk RNA-seq

Cole et al. (2019). Cell Systems
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The zero-inflated negative binomial

For any π ∈ [0, 1], the PMF of the zero-inflated negative binomial
(ZINB) distribution is given by

fZINB(y;µ, θ, π) = πδ0(y) + (1− π)fNB(y;µ, θ), ∀y ∈ N,

where δ0(·) is the Dirac function.

Here, π can be interpreted as the probability that a 0 is observed
instead of the actual count, resulting in an inflation of zeros
compared to the NB distribution, hence the name ZINB.
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Single-cell RNA-seq read counts

Townes et al. (2019). bioRxiv
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UMIs help!

Townes et al. (2019). bioRxiv
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Log transformation does not!

Townes et al. (2019). bioRxiv
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Do we need to account for the extra zeros in the
model?

• Non-UMI data: yes!
• UMI data: probably not. . .

Recent results suggest that in UMI data, in particular in
droplet-based data, zero-inflation may not be an important issue.
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Do we need to account for the extra zeros in the
model?

Svensson (2019). bioRxiv
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Quality Control and Filtering
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Quality Control and Filtering

Exploratory data analysis (EDA) and quality control (QC) are of
utmost importance in genomics.

With single cell data we have the luxury of having a large number of
samples, hence we can filter out low quality cells as well as lowly
expressed genes.

There are some simple metrics that we can compute as a proxy of
the quality of the samples.
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Identifying empty droplets

DropletUtils Bioconductor package
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Computing QC metrics

sce <- TENxPBMCData::TENxPBMCData("pbmc4k")
sce <- scater::calculateQCMetrics(sce)
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Filtering genes and samples

scater Bioconductor package
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Exploring batch effects

scone Bioconductor package
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Normalization

43 / 88



44 / 88



Normalization

As with bulk RNA-seq, it is important to account for the differences
in sequencing depth and the other biases that may affect the
expression levels.

Vallejos et al (2017). Nature Methods
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Bulk RNA-seq normalization do not always work

Vallejos et al (2017). Nature Methods
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Pooling across cells helps

scran Bioconductor package
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Non-linear normalization

SCnorm Bioconductor package
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Ranking normalization by performance

scone Bioconductor package
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Model-based approach

An alternative, is to include normalization as a parameter of the
statistical model.

This has the advantage of propagating the uncertainty in the
estimation of the scaling factors.

This is the approach of the BASiCS and zinbwave Bioconductor
packages.
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Dimensionality reduction
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Dimensionality reduction

Dimensionality reduction is useful for two related goals

1 Visualize high dimensional data (usually in two dimensions)
• PCA
• t-SNE
• UMAP

2 Infer low-rank signal from high dimensional data (2 – 50
dimensions)

• PCA as a factor analysis model
• ZIFA
• ZINB-WaVE
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Principal Component Analysis (PCA)

Principal component analysis (PCA) is a dimensionality reduction
technique that provides a parsimonious summarization of the data
by replacing the original variables by fewer linear combinations of
these variables, that are orthogonal and have successively maximal
variance.

Such linear combinations seek to “separate out” the observations,
while loosing as little information as possible.
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Sample quality affects PCA
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Batch effects!
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Desired properties

• Accounting for zero inflation (dropouts), over-dispersion, and
the count nature of the data.

• General and flexible.

• Extract low-dimensional signal from the data.

• Adjust for complex, non-linear effects (batch effects)

• Scalable
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The ZINB-WaVE model

Given n samples and J genes, let Yij denote the count of gene j
(for j = 1, . . . , J) for sample i (for i = 1, . . . , n).
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Sample quality affects PCA
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ZINB-WaVE adjusts for quality
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Evident batch effects
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ZINB-WaVE adjusts for batch effects
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ZINB-WaVE adjusts for batch effects

library(zinbwave)

sce <- zinbwave(sce, X = "~batch", K = 10)
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GLM-PCA

In droplet-based data, it might be safe to ignore zero inflation.

We can of course use a simpler “NB-WAVE” model.

Alternatively, we can exploit the fact that the negative binomial
distribution (with known dispersion) belongs to the exponential
family.

The GLM-PCA method is a generalization of PCA for the
exponential family.

Townes et al. (2019) propose a fast approximation to GLM-PCA
based on deviance residuals that is much faster than ZINB-WAVE
and gives comparable results.
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Approximate PCA

Even regular PCA is not scalable enough to very large datasets
(millions of cells) and approximations are needed.

The BiocSingular package provides implementations of the random
PCA algorithm and the implicitly restarted Lanczos
bidiagonalization algorithm (IRLBA).
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Lineage Inference
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Motivation
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Motivation

74 / 88



The slingshot algorithm

We start from a proper representation of the cells in some space
defined by their gene expression (usually after dimensionality
reduction).

We have identified a set of K clusters.

1 Identification of lineages
• treat clusters as nodes in a graph
• draw a minimum spanning tree (MST) between the nodes
• lineages are ordered sets of clusters
• semi-supervised: set the starting cluster (root of the tree) and

optionally a set of known end points (leaves)
2 Draw a “smooth” path through the lineages

• use of principal curves (Hastie and Stuetzle, 1989)
• shrink curves together in shared paths (simultaneous principal

curves)
• project each cell onto the principal curve(s) to infer pseudotime
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The slingshot algorithm

76 / 88



The slingshot algorithm
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The slingshot algorithm
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The slingshot algorithm

81 / 88



Shape-sensitive distance

Constructing an MST involves specifying a distance measure
between nodes.

A Mahalanobis-like distance, i.e., a covariance-scaled Euclidean
distance, that accounts for cluster shape, works well in practice.

d2(Ci, Cj) ≡ (X̄i − X̄j)T (Si + Sj)−1(X̄i − X̄j),
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Biological meaningful supervision

Slingshot allows two forms of supervision during lineage
identification:

• initial state (root)
• terminal states (leaves)

Like other methods, Slingshot requires the user to identify the initial
cluster or root node.

Slingshot optionally allows the specification of terminal cell states,
imposing a local constraint on the MST algorithm.

83 / 88



Principal Curves algorithm (Hastie and Stuetzle,
1989)

Iteratively follow these steps:

1 Project all data points onto the curve and calculate the arc
length from the beginning of the curve to each point’s
projection. Setting the lowest value to zero, this produces
pseudotimes.

2 For each dimension j, use the cells’ pseudotimes to predict
their coordinates, typically with a smoothing spline.

• This produces a set of J ′ functions which collectively map
pseudotime values defining a smooth curve in J ′ dimensions.

3 Repeat this process until convergence, using the sum of
squared distances between cells’ actual coordinates and their
projections on the curves to determine convergence.
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Simultaneous Principal Curves

To allow for multiple lineages, we modify the principal curves
algorithms in two ways:

• We incorporate cell weights to allow cells to contribute
differently to different lineages.
• We add a shrinkage procedure to ensure smooth branching
events.

The shrinkage is performed by first recursively constructing an
average curve for each branching event, then recursively shrinking
the branching lineage curves toward this average.
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Shrinkage

We construct non-increasing curve-specific weights, with wm(0) = 1
(maximum shrinkage) - diverging curves always share the same
initial point

Shrink the diverging curves toward the average curve:

cnew
m (t) ≡ wm(t)cavg(t) + (1− wm(t))cm(t).
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The slingshot package

library(slingshot)
ce <- slingshot(ce, reducedDim = "MDS",

start.clus = "c1")
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Thank you!

Email: risso.davide@gmail.com

Twitter: @risso1893

Github: github.com/drisso
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