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SEQUENCING TECHNOLOGIES

▸ Second generation 
▸ Millions of reads per sample 
▸ Each read ~100-300 bp 
▸ Very low error rates 

▸ Third generation 
▸ Much longer reads: up to full RNA molecule 
▸ Not as many reads 
▸ Much higher error rates



RNA SEQUENCING

https://bioinformaticsonline.com/file/view/42693/dna-rna-meme



RNA-SEQ

▸ Compared to DNA sequencing, RNA sequencing is more 
challenging: 

1. While with DNA sequencing it is reasonable to assume a uniform coverage of the 
genome, this is not the case for the transcriptome.

Genes ranked by expression

Expression levels Few genes with many 
reads and many 
genes with few reads 
(Zipf Law).

Log scale

Griebel et al, NAR 2012



RNA-SEQ

▸ Compared to DNA sequencing, RNA sequencing is more 
challenging: 

2. A read does not necessarily correspond to a contiguous genomic region.

Chromosome 10, Homo sapiens

Exons of gene PTEN



RNA-SEQ

▸ Compared to DNA sequencing, RNA sequencing is more 
challenging: 

3. A read can be associated to more than one transcript.

Chromosome 10, Homo sapiens

PTEN has three isoforms Unambiguous assignment to 
isoform one.

Ambiguous assignment: 
The read may arise from any of the isoforms



LIBRARY PREPARATION PROTOCOLS

▸ One advantage of Illumina sequencing is its versatility. 

▸ Different types of libraries can be used depending on the 
biological question at hand. 

Single-end sequencing. 

We sequence only one of the two ends of each fragment of cDNA.

Fragment
Read



ALTERNATIVE SPLICING

▸ Single-end sequencing provide short-range information 
(100-200 bp), while alternative splicing can involve long 
exons. 

▸ To quantify isoform expression levels, we need reads that 
map to exon-exon junctions. 

▸ Only a small fraction of reads will map to splice junctions.

Pre-mRNA

Mature mRNA

Exonic reads

Junction reads



PAIRED-END SEQUENCING

▸ Paired-end sequencing allows us to simultaneously 
measure both ends of each fragment. 

▸ Often the two reads do not “touch” each other 

▸ We simply ignore the internal sequence. 
▸ However, we can infer the relative position of the reads from the average 

fragment length.

Read 1

Read 2



ALIGNMENT



READ ALIGNMENT

▸ Since the technology allows to sequence only short reads, 
it is not straightforward to understand where the reads 
come from in the genome. 

▸ A necessary step, called alignment, maps the reads to 
their origin in either the genome or the transcriptome. 

▸ Once we have aligned the reads, we need to quantify 
gene expression by “counting” how many reads mapped 
to a given gene. 

▸ The counts are our estimate of the gene expression level.



CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

Your genome

GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG

Reads



CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG
TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC CGCTGGAGCCGGAGC

Reads

Your genome



CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG
TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC CGCTGGAGCCGGAGC
TGTCTTTGATTCCTG CGCGATAGCATTGCG GCATTGCGAGACGCT CCTATGTCGCAGTAT

Reads

Your genome



CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

GTATGCACGCGATAG TATGTCGCAGTATCT CACCCTATGTCGCAG GAGACGCTGGAGCCG
TAGCATTGCGAGACG GGTATGCACGCGATA TGGAGCCGGAGCACC CGCTGGAGCCGGAGC
TGTCTTTGATTCCTG CGCGATAGCATTGCG GCATTGCGAGACGCT CCTATGTCGCAGTAT
GACGCTGGAGCCGGA GCACCCTATGTCGCA GTATCTGTCTTTGAT CCTCATCCTATTATT
TATCGCACCTACGTT CAATATTCGATCATG GATCACAGGTCTATC ACCCTATTAACCACT

TGCATTTGGTATTTT CGTCTGGGGGGTATG CACGCGATAGCATTG
GTATGCACGCGATAG ACCTACGTTCAATAT TATTTATCGCACCTA CCACTCACGGGAGCT
GCGAGACGCTGGAGC CTATCACCCTATTAA CTGTCTTTGATTCCT ACTCACGGGAGCTCT
CCTACGTTCAATATT GCACCTACGTTCAAT GTCTGGGGGGTATGC AGCCGGAGCACCCTA
GACGCTGGAGCCGGA GCACCCTATGTCGCA GTATCTGTCTTTGAT CCTCATCCTATTATT
TATCGCACCTACGTT CAATATTCGATCATG GATCACAGGTCTATC ACCCTATTAACCACT
CACGGGAGCTCTCCA TGCATTTGGTATTTT CGTCTGGGGGGTATG CACGCGATAGCATTG

CACGGGAGCTCTCCA

Reads

Your genome



Reads

100 nt

100,000,000 nt

Your genome



Reads

100 nt

Your genome
100,000,000 nt?



READS ARE CHARACTER STRINGS

▸ Reads are character 
strings 

▸ The character 
sequence is the only 
information that we 
have on the origin of 
the reads. 

▸ Like a jigsaw puzzle, 
we need to 
reconstruct the picture 
from individual pieces.



▸ Many algorithms have been developed in the computer 
science literature to solve this problem.



DIFFICULTIES

▸ An alignment algorithm must support mismatches. 

▸ Mismatches are due to either sequencing errors or 
mutations.

Single-end	read	alignment

Sequence read

x
x x

Reference transcripts
AAAAAAAAAA

AAAAAAAAAA

AAAAAAAAAA

• sequencer made	errors reading sequence
• the	reference genome/transcriptome	is different from	the	sequenced

genome/transcriptome

An	aligner have to	support,	evaluate and	be	able to	weigth
misalignements (gaps,	substiutions,	indels)	

single	end	read

mRNA3

mRNA2
mRNA1



GENOME OR TRANSCRIPTOME ALIGNMENT?

▸ Reads can be aligned either to the genome or the transcriptome, i.e., the set of all 
transcripts. 

▸ Only about 5-10% of the genome is transcribed; hence transcript alignment is faster 
computationally. 

▸ However, because of alternative splicing, many transcripts share large portions of their 
sequences, leading to multiply mapped reads (o multi-reads), i.e., reads that map to 
more than one transcript. 

▸ On the other hand, mapping reads to the genome is complicated by splicing, i.e. reads 
consist of non adjacent regions in the genome. 

Choice	the	reference	sequence

?

Reference transcriptome
AAAAAAAAAA

AAAAAAAAAA
AAAAAAAAAA

Short	reads generated by	RNA-seq experiments can	be	aligned,	or	"mapped"	to	
a	reference genome or	a	reference transcriptome.

Reference
genome

Sequence read

mRNAs



GENOME ALIGNMENT

▸ We do not have time to go into the algorithmic details, but 
many modern software packages (e.g., BWA, Bowtie) use 
the Burrows-Wheeler transformation to speed up the 
search for matching sequences. 

▸ They also implement a backtracking algorithm to allow 
for mismatches. 

▸ More details: 

▸ https://langmead-lab.org/teaching-materials/ 

▸ https://kingsfordlab.cbd.cmu.edu/teaching/

https://langmead-lab.org/teaching-materials/
https://kingsfordlab.cbd.cmu.edu/teaching/


GENOME ALIGNMENT (WITH SPLICING)

https://discoveringthegenome.org/discovering-genome/rna-sequencing-up-close-data/spliced-alignment



TOPHAT

One strategy is that employed by TopHat 

▸ In the first step it aligns the reads to the 
genome. 

▸ It collects all the non-aligned reads 
(potentially caused by splicing). 
▸ It groups the genomic regions covered by 

alignments in “islands”. 

▸ It enumerates all possible canonical 
splicing patterns (GT-AG) among islands. 

▸Non-aligned reads are compared to 
potential splicing sites.

Trapnell et al, 2009



STAR

▸ An alternative approach is STAR. 
▸ It searches for the Maximal Mappable Prefix (MMP) of each 

read against the genome. 
▸ In (a) the first part of the read corresponds to an exon 
▸ The alignment stops at the exon-intron boundary 
▸ The mapping is resumed for the read part not yet 

mapped. 
▸ Very efficient search based on a pre-computed suffix array.

Stopped alignment
Dobin et al, 2013



QUANTIFICATION
mRNA

Fragments

Reads

Mangul et al, BMC Genomics 2014



DIRECT COUNTING

The simplest method we can think of: 

1. Align the reads to the genome 
2. Identify regions corresponding to exons 
3. Count the number of reads mapped to each exon 
4. Sum the counts for all exons of a given gene

Genes

Samples

Coverage

Shamimuzzaman et al, Plos ONE. 2018



AMBIGUOUS READS

This simple strategy is not sufficient to deal with alternative 
splicing. 

▸ A read can be aligned to an exon shared by more transcripts. 
▸ In quantifying transcript expression to which isoform do we assign the read?

Trapnell et al, Nature Biotech. 2012

Three hypothetical 
examples

Reads from first isoform

Reads from second isoform

Unique Ambiguous



GENE- OR TRANSCRIPT-LEVEL SUMMARIES?



A STATISTICAL MODEL

▸ A more proper solution is to develop a statistical 
approach. 

▸ We define and estimate a set of parameters, some latent, 
that allow us to fully leverage the information present in 
the data to infer gene expression.

Trapnell et al, Nature Biotech. 2012

Three hypothetical 
examples

Reads from first isoform

Reads from second isoform

Unique Ambiguous



RNA-SEQ BY EXPECTATION-MAXIMIZATION (RSEM)

▸ An example of such approach is 
RSEM 

▸ Available as open-source 
software: 

https://deweylab.github.io/RSEM/ 

▸ It starts from a set of aligned 
reads (typically aligned to the 
transcriptome).

Li et al, Bioinformatics 2011

https://deweylab.github.io/RSEM/


RSEM GENERATIVE MODEL

▸ We focus on the initial, simpler version of RSEM (Li et al. 2009) 

▸  represents the observed reads ( ) and is the only observed 
quantity. 

▸  is the vector of transcript abundances, which we want to 
estimate. 

▸ There are several latent variables: 

▸ Gn: the isoform that generates . 

▸ Sn: the position in the isoform. 

▸ On: the strand.

Rn n = 1,…, N

θ = [θ1, …, θM]

Rn



LIKELIHOOD

▸ We only observe  and we cannot directly compute the 
likelihood. 

▸ RSEM uses an Expectation-Maximization (EM) algorithm to 
maximize the likelihood.

Rn

P(g, s, o, r |θ) =
N

∏
n=1

P(gn |θ)P(sn |gn)P(on |gn)P(rn |gn, sn, on) .



E STEP

▸ Assume that we know . 

▸ We define the indicator Z:  

 

▸ Compute the probability that read n comes from transcript 
i. 

θ

Znijk = 1 ⟺ (Gn, Sn, On) = (i, j, k)

P(Znij = 1 |r, θ(t)) =
(θ(t)

i /li)P(rn |Znij = 1)

∑i′ ,j′ 
(θ(t)

i′ 
/li′ )P(rn |Zni′ j′ = 1)

Read alignmentsTranscript length

Transcript abundance



E STEP — EXAMPLE

Transcript i=1

Transcript i=2

Read 5𝑃(𝑟5 𝑍5,1,1     = 1) = 0

𝑃(𝑟5 𝑍5,1,100 = 1) = 0

𝑃(𝑟5 𝑍5,2,1     = 1) = 0

𝑃(𝑟5 𝑍5,2,75   = 1) = 1



E STEP — EXAMPLE

Transcript i=1

Transcript i=2

Read 9

𝑃(𝑟9 𝑍9,1,1   = 1)  = 0

𝑃(𝑟9 𝑍9,1,20 = 1)  = 0 . 5

𝑃(𝑟9 𝑍9,2,20 = 1)  = 0 . 5



M STEP

▸ Assume you have a current estimate of the probabilities 
(from the E step) 

▸ We look for the values of  that explain the most of those 
probabilities. 

θ

𝜃(𝑡+1)
𝑖 =

𝐶𝑖 𝑟, 𝜃(𝑡)

𝑁

(1)

Estimated count for transcript i, based on (1)

Estimate at iteration t+1

... dipends on the estimate at the 
previous iteration (t)

Normalization factor



M STEP — EXAMPLE

Transcript i=1

Transcript i=2

9 5

𝜃(𝑡+1)
𝑖 =

𝐶𝑖 𝑟, 𝜃(𝑡)

𝑁

𝑃(𝑟5 𝑍5,2,75   = 1) = 1

𝑃(𝑟9 𝑍9,1,20 = 1)  = 0 . 5

𝑃(𝑟9 𝑍9,2,20 = 1)  = 0 . 5

𝐶1 = 0.5

𝐶2 = 1 + 0.5 = 1.5

Assumptions: 
1. No sequencing errors 
2. All transcripts have the same length



CONVERGENCE

▸ The E and M steps are alternated until convergence. 

▸ I.e., at each step until the estimates of  and  are so 
close that are almost indistinguishable. 

▸ By default the relative difference is set to .

θ(t) θ(t+1)

10−3



PSEUDO-ALIGNMENT



SALMON

▸ An alternative faster 
approach 

▸ Available as open-source 
software: 

https://github.com/COMBINE-lab/salmon 

▸ It uses quasi-mapping to 
speed up computations 

▸ It can process 600M 
paired-end reads in 20 
minutes.

Patro et al, Nature Methods 2017

https://github.com/COMBINE-lab/salmon


QUASI-MAPPING

▸ Alignment is the step with the main computational cost: 
▸ High computational time 
▸ High memory consumption 

▸ In some cases we do need the full read alignments 
▸ E.g., variant calling (SNPs). 

▸ If we are only interested in expression quantification, it is 
possible to leverage alternative algorithms that do not 
require the full mapping. 

▸ There are several alternative strategies called quasi-
mapping or pseudo-alignment. 



QUASI-MAPPING

▸ We start from the sequences of all transcripts. 
▸ We concatenate the sequences. 
▸ Separated by a special character (e.g., «$»). 

We construct two structures: 
▸ A suffix array SA, similar to STAR. 
▸ A table (hash map) that maps all the sequences of a fixed length (k-mers) to the 

positions in the SA.

Srivastava et al, Bioinformatics 2016



SEARCH PHASE

▸ Given a read R 

▸ We select the first k nucleotides. 
▸ We search for them in the hash map. 
▸ We find the corresponding interval in the SA. 
▸ We expand the search to the following positions, until we find exact matches. 

▸ Every time that we find a mismatch the procedure starts 
again from the next position in the read. 

▸ Once the process is complete, we have a map: 

▸ Ri → Tj, Pk  

▸ Ri → Tl, Pm

Read i is compatible with 
transcript j at position k



CONSENSUS PHASE

▸ Given the map: 
▸ R1 → T5, P10  
▸ R1 → T7, P50 
▸ R1 → T5, P100 
▸ R1 → T9, P110 

▸ The only transcript compatible with all positions is T5. 

▸ We take the intersection of all transcripts associated to R. 

▸ This procedure is computationally very efficient.



COMPUTATIONAL TIME

Quasi-mapping is much faster than full mapping. 

▸ «RapMap» indicates quasi-mapping here.

Srivastava et al, Bioinformatics 2016



ACCURACY

Srivastava et al, Bioinformatics 2016 As accurate as mapping



EXPRESSION QUANTIFICATION

▸ Once we have the quasi-alignment results, we need to 
quantify each transcript expression. 

▸ Salmon uses a statistical model conceptually similar to that 
of RSEM. 

▸ Compared to the simplified version that we considered, it 
models: 
▸ Fragment size. 
▸ Positional bias and transcript coverage. 
▸ 3’ and 5’ bias. 
▸ GC-content. 
▸ Strand-specificity. 

See Patro et al. (2017) for details

https://www.nature.com/articles/nmeth.4197


OUTPUT

▸ Salmon yields several files for each sample.



NORMALIZED EXPRESSION 

▸ Both RSEM and Salmon return, in addition to expected 
counts, two expression measures: 
▸ FPKM 
▸ TPM 

▸ They are both attempts at normalizing gene expression. 

▸ Intuitively, the number of reads for each gene depends, in 
addition to its gene expression, on: 

1. Sequencing depth. E.g., if we sequence twice as many total reads, we will have 
on average double counts. 

2. Transcript length. I.e., the longer the transcript the more reads we are likely to 
sequence.



FPKM

▸ Acronym of: 
fragments per kilobase of exon model per million mapped reads 

▸ I.e., for each transcript i: 

𝑓𝑝𝑘𝑚𝑖 =
𝑟𝑖 109

𝑙𝑖 𝑅

𝑅 = ∑
𝑖 ∈ 𝑇

𝑟𝑖

Number of reads Transcript length Sequencing depth

=

𝑟𝑖 103

𝑙𝑖

𝑅
106



TPM

Acronym of transcripts per million. 

𝑡𝑝𝑚𝑖 =
𝑟𝑖  ×  𝐿  ×  106

𝑙𝑖 ×  𝑅

𝑅 = ∑
𝑖 ∈ 𝑇

𝑟𝑖  ×  𝐿
𝑙𝑖

Read length
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1

2

Constant average value across 
experiments

AvFPKM



DATA REPRESENTATION

▸ At the end of the quantification process, the data can be 
represented as a numeric matrix, which contains non-negative 
integers. 

▸ Very often n ≪ p

Exp 1 Exp 2 … Exp n

Gene 1

Gene 2

…

Gene p



DATA REPRESENTATION

▸ Columns correspond to statistical units (samples, individuals, 
cell lines, …) 

▸ Rows correspond to features (genes, transcripts) 

▸ Furthermore, we often have additional information on genes 
and/or samples, often referred to metadata.

Exp 1 Exp 2 … Exp n

Gene 1

Gene 2

…

Gene p



DATA REPRESENTATION IN R/BIOCONDUCTOR



THANKS FOR YOUR ATTENTION!


