

Università degli Studi di Padova

CSAMA 2022 - BRIXEN/BRESSANONE

INTRODUCTION TO RNA-SEQ

Davide Risso Ødrisso1893 Ødrisso Some slides of this lecture reuse material from "DNA sequencing" by Ben Langmead (Johns Hopkins University) released under CC-BY licence

Some slides of this lecture reuse material developed by Gabriele Sales (University of Padova) courtesy of the author

SEQUENCING TECHNOLOGIES

Second generation

- Millions of reads per sample
- Each read ~100-300 bp
- Very low error rates

Third generation

- Much longer reads: up to full RNA molecule
- Not as many reads
- Much higher error rates

RNA SEQUENCING

https://bioinformaticsonline.com/file/view/42693/dna-rna-meme

RNA-SEQ

- Compared to DNA sequencing, RNA sequencing is more challenging:
 - 1. While with DNA sequencing it is reasonable to assume a uniform coverage of the genome, this is not the case for the transcriptome.

Few genes with many reads and many genes with few reads (Zipf Law).

RNA-SEQ

- Compared to DNA sequencing, RNA sequencing is more challenging:
 - 2. A read does not necessarily correspond to a contiguous genomic region.

Chromosome 10, Homo sapiens

RNA-SEQ

- Compared to DNA sequencing, RNA sequencing is more challenging:
 - **3.** A read can be associated to more than one transcript.

LIBRARY PREPARATION PROTOCOLS

- One advantage of Illumina sequencing is its versatility.
- Different types of libraries can be used depending on the biological question at hand.

Single-end sequencing.

We sequence only one of the two ends of each fragment of cDNA.

Read	
	Fragment

ALTERNATIVE SPLICING

- Single-end sequencing provide short-range information (100-200 bp), while alternative splicing can involve long exons.
- To quantify isoform expression levels, we need reads that map to exon-exon junctions.
- Only a small fraction of reads will map to splice junctions.

PAIRED-END SEQUENCING

Paired-end sequencing allows us to simultaneously measure both ends of each fragment.

Often the two reads do not "touch" each other

- We simply ignore the internal sequence.
- However, we can infer the relative position of the reads from the average fragment length.

READ ALIGNMENT

- Since the technology allows to sequence only short reads, it is not straightforward to understand where the reads come from in the genome.
- A necessary step, called **alignment**, maps the reads to their origin in either the genome or the transcriptome.
- Once we have aligned the reads, we need to quantify gene expression by "counting" how many reads mapped to a given gene.
- The **counts** are our estimate of the **gene expression level**.

Reads

GTATGCACGCGATAG TAGCATTGCGAGACG TGTCTTTGATTCCTG GACGCTGGAGCCGGA TATCGCACCTACGTT CACGGGAGCTCTCCA GTATGCACGCGATAG GCGAGACGCTGGAGCC CCTACGTTCAATATT GACGCTGGAGCCGGA TATCGCACCTACGTT CACGGGAGCTCTCCA TATGTCGCAGTATCT GGTATGCACGCGATA CGCGATAGCATTGCG GCACCCTATGTCGCA CAATATTCGATCATG TGCATTTGGTATTTT ACCTACGTTCAATAT CTATCACCCTATTAA GCACCTACGTTCAAT GCACCTATGTCGCA CAATATTCGATCATG CACCCTATGTCGCAG TGGAGCCGGAGCACC GCATTGCGAGAGCACC GTATCTGTCTTTGAT GATCACAGGTCTATC CGTCTGGGGGGGGTATG TATTTATCGCACCTA CTGTCTTTGATTCCT GTCTGGGGGGGGTATGC GTATCTGTCTTTGAT GATCACAGGTCTATC CGTCTGGGGGGGTATG GAGACGCTGGAGCCG CGCTGGAGCCGGAGC CCTATGTCGCAGTAT CCTCATCCTATTATT ACCCTATTAACCACT CACGCGATAGCATTG CCACTCACGGGAGCTCT AGCCGGAGCACCCTA AGCCGGAGCACCCTA CCTCATCCTATTATT ACCCTATTAACCACT CACGCGATAGCATTG

Your genome

CGTCTGGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTG

Your genome	
▲	100,000,000 nt

Your genome

READS ARE CHARACTER STRINGS

GTATGCACGCGATAG TAGCATTGCGAGAGACG TGTCTTTGATTCCTG GACGCTGGAGCCGGA TATCGCACCTACGTT CACGGGAGCTCTCCA GTATGCACGCGATAG GCGAGACGCTGGAGCC CCTACGTTCAATATT GACGCTGGAGCCGGA TATCGCACCTACGTT CACGGGAGCTCTCCA TATGTCGCAGTATCT GGTATGCACGCGATA CGCGATAGCATTGCG GCACCCTATGTCGCA CAATATTCGATCATG TGCATTTGGTATTTT ACCTACGTTCAATAT CTATCACCCTATTAA GCACCTACGTTCAAT GCACCTATGTCGCA CAATATTCGATCATG CACCCTATGTCGCAG TGGAGCCGGGAGCACC GCATTGCGAGAGCGCT GTATCTGTCTTTGAT GATCACAGGTCTATC CGTCTGGGGGGGGTATG TATTTATCGCACCTA CTGTCTTTGATTCCT GTCTGGGGGGGGTATGC GTATCTGTCTTTGAT GATCACAGGTCTATC CGTCTGGGGGGGGTATG

- Reads are character strings
- The character sequence is the only information that we have on the origin of the reads.
- Like a jigsaw puzzle, we need to reconstruct the picture from individual pieces.

Many algorithms have been developed in the computer science literature to solve this problem.

DIFFICULTIES

Mismatches are due to either sequencing errors or mutations.

GENOME OR TRANSCRIPTOME ALIGNMENT?

- Reads can be aligned either to the genome or the transcriptome, i.e., the set of all transcripts.
- Only about 5-10% of the genome is transcribed; hence transcript alignment is faster computationally.
- However, because of alternative splicing, many transcripts share large portions of their sequences, leading to multiply mapped reads (o multi-reads), i.e., reads that map to more than one transcript.
- On the other hand, mapping reads to the genome is complicated by splicing, i.e. reads consist of non adjacent regions in the genome.

GENOME ALIGNMENT

- We do not have time to go into the algorithmic details, but many modern software packages (e.g., BWA, Bowtie) use the **Burrows-Wheeler transformation** to speed up the search for matching sequences.
- They also implement a **backtracking algorithm** to allow for mismatches.
- More details:
 - https://langmead-lab.org/teaching-materials/
 - https://kingsfordlab.cbd.cmu.edu/teaching/

GENOME ALIGNMENT (WITH SPLICING)

https://discoveringthegenome.org/discovering-genome/rna-sequencing-up-close-data/spliced-alignment

TOPHAT

One strategy is that employed by TopHat

- In the first step it aligns the reads to the genome.
- It collects all the non-aligned reads (potentially caused by splicing).
- It groups the genomic regions covered by alignments in "islands".
- It enumerates all possible canonical splicing patterns (GT-AG) among islands.
- Non-aligned reads are compared to potential splicing sites.

STAR

- An alternative approach is STAR.
- It searches for the Maximal Mappable Prefix (MMP) of each read against the genome.
 - In (a) the first part of the read corresponds to an exon
 - The alignment stops at the exon-intron boundary
 - The mapping is resumed for the read part not yet mapped.
- Very efficient search based on a pre-computed suffix array.

Dobin et al, 2013

QUANTIFICATION

DIRECT COUNTING

The simplest method we can think of:

- 1. Align the reads to the genome
- 2. Identify regions corresponding to exons
- 3. Count the number of reads mapped to each exon
- 4. Sum the counts for all exons of a given gene

AMBIGUOUS READS

This simple strategy is not sufficient to deal with alternative splicing.

- A read can be aligned to an exon shared by more transcripts.
- In quantifying transcript expression to which isoform do we assign the read?

GENE- OR TRANSCRIPT-LEVEL SUMMARIES?

A STATISTICAL MODEL

- A more proper solution is to develop a statistical approach.
- We define and estimate a set of parameters, some latent, that allow us to fully leverage the information present in the data to infer gene expression.

RNA-SEQ BY EXPECTATION-MAXIMIZATION (RSEM)

- An example of such approach is RSEM
- Available as open-source software:

https://deweylab.github.io/RSEM/

 It starts from a set of aligned reads (typically aligned to the transcriptome).

transcript_id	gene_id	length	effective_length	expected_count	TPM	FPKM	IsoPct
ESS000001	ESG000001	979	829.31	128.00	3.86	6.77	100.00
ESS000002	ESG000002	467	317.31	14.00	1.10	1.93	75.68
ESS000003	ESG000002	373	223.32	0.00	0.00	0.00	0.00
ESS000004	ESG000002	432	282.31	4.00	0.35	0.62	24.32
ESS000005	ESG000003	1646	1496.31	22.26	0.37	0.65	28.69
ESS000006	ESG000003	1674	1524.31	10.32	0.17	0.30	13.05
ESS000007	ESG000003	1746	1596.31	22.10	0.35	0.61	26.69
ESS000008	ESG000003	1268	1118.31	18.32	0.41	0.72	31.58
ESS000009	ESG000004	215	65.33	0.00	0.00	0.00	0.00
ESS000010	ESG000004	206	56.33	0.00	0.00	0.00	0.00
ESS000011	ESG000004	368	218.32	38.00	4.35	7.63	100.00
ESS000012	ESG000004	308	158.32	0.00	0.00	0.00	0.00
ESS000013	ESG000005	2091	1941.31	0.00	0.00	0.00	0.00
FCC000044	FCCOOOOF	1000	4405 34	0.00	0 00	0 00	0 00

Li et al, Bioinformatics 2011

RSEM GENERATIVE MODEL

- We focus on the initial, simpler version of RSEM (Li et al. 2009)
- *R_n* represents the observed reads (*n* = 1,...,*N*) and is the only observed quantity.
- $\theta = [\theta_1, ..., \theta_M]$ is the vector of transcript abundances, which we want to estimate.
- There are several latent variables:
 - G_n : the isoform that generates R_n .
 - S_n : the position in the isoform.
 - \bullet O_n: the strand.

LIKELIHOOD

- We only observe R_n and we cannot directly compute the likelihood.
- RSEM uses an Expectation-Maximization (EM) algorithm to maximize the likelihood.

E STEP

- Assume that we know θ .
- We define the indicator *Z*:

$$Z_{nijk} = 1 \iff (G_n, S_n, O_n) = (i, j, k)$$

Compute the probability that read n comes from transcript i.

E STEP — EXAMPLE

$$P(Z_{nij} = 1 | r, \theta^{(t)}) = \frac{(\theta_i^{(t)} / \ell_i) P(r_n | Z_{nij} = 1)}{\sum_{i', j'} (\theta_{i'}^{(t)} / \ell_{i'}) P(r_n | Z_{ni'j'} = 1)}$$

E STEP — EXAMPLE

$$P(r_9 | Z_{9,1,1} = 1) = 0$$

$$P(r_9 | Z_{9,1,20} = 1) = 0.5$$

$$P(r_9 | Z_{9,2,20} = 1) = 0.5$$

$$P(Z_{nij} = 1 | r, \theta^{(t)}) = \frac{(\theta_i^{(t)} / \ell_i) P(r_n | Z_{nij} = 1)}{\sum_{i', j'} (\theta_{i'}^{(t)} / \ell_{i'}) P(r_n | Z_{ni'j'} = 1)}$$

M STEP

- Assume you have a current estimate of the probabilities (from the E step)
- We look for the values of θ that explain the most of those probabilities.

 $P(Z_{nij} = 1 | r, \theta^{(t)})$ (1)

M STEP — EXAMPLE

$$P(r_{5} | Z_{5,2,75} = 1) = 1$$

$$P(r_{9} | Z_{9,1,20} = 1) = 0.5$$

$$P(r_{9} | Z_{9,2,20} = 1) = 0.5$$

 $C_1 = 0.5$

 $C_2 = 1 + 0.5 = 1.5$

Assumptions:

- 1.
- No sequencing errors All transcripts have the same length 2.

$$\theta_i^{(t+1)} = \frac{C_i \left| r, \theta^{(t)} \right|}{N}$$

CONVERGENCE

- The E and M steps are alternated until convergence.
- I.e., at each step until the estimates of $\theta^{(t)}$ and $\theta^{(t+1)}$ are so close that are almost indistinguishable.
- By default the relative difference is set to 10^{-3} .

SALMON

- An alternative faster approach
- Available as open-source software:

https://github.com/COMBINE-lab/salmon

- It uses quasi-mapping to speed up computations
 - It can process 600M
 paired-end reads in 20
 minutes.

QUASI-MAPPING

- Alignment is the step with the main computational cost:
 - High computational time
 - High memory consumption
- In some cases we do need the full read alignments
 - E.g., variant calling (SNPs).
- If we are only interested in expression quantification, it is possible to leverage alternative algorithms that do not require the full mapping.
- There are several alternative strategies called quasimapping or pseudo-alignment.

QUASI-MAPPING

- We start from the sequences of all transcripts.
 - We concatenate the sequences.
 - Separated by a special character (e.g., «\$»).
- We construct two structures:
 - A suffix array SA, similar to STAR.
 - A table (hash map) that maps all the sequences of a fixed length (k-mers) to the positions in the SA.
 Transcriptome (T) with separator

SEARCH PHASE

Given a read R

- We select the first *k* nucleotides.
- We search for them in the hash map.
- We find the corresponding interval in the SA.
- We expand the search to the following positions, until we find exact matches.
- Every time that we find a mismatch the procedure starts again from the next position in the read.
- Once the process is complete, we have a map:

CONSENSUS PHASE

- Given the map:
 - $\blacktriangleright R_1 \rightarrow T_5, P_{10}$
 - $\blacktriangleright R_1 \rightarrow T_7, P_{50}$
 - $\blacktriangleright \mathbf{R}_1 \rightarrow \mathbf{T}_5, \mathbf{P}_{100}$
 - $\blacktriangleright \mathbf{R}_1 \rightarrow \mathbf{T}_9, \mathbf{P}_{110}$
- The only transcript compatible with all positions is T₅.
 - We take the intersection of all transcripts associated to R.
- This procedure is computationally very efficient.

COMPUTATIONAL TIME

Quasi-mapping is much faster than full mapping.

«RapMap» indicates quasi-mapping here.

Srivastava et al, Bioinformatics 2016

ACCURACY

Metric	Bowtie 2	RарМар	STAR
Reads aligned	47 579 567	47 613 536	44711604
Recall	97.41	97.49	91.35
Precision	98.31	98.48	97.02
F1-score	97.86	97.98	94.10
FDR	1.69	1.52	2.98
Hits per read	5.98	4.30	3.80
Srivastava <i>et al</i> , Bioinformat	tics 2016		As accurate as mapping

EXPRESSION QUANTIFICATION

- Once we have the quasi-alignment results, we need to quantify each transcript expression.
- Salmon uses a statistical model conceptually similar to that of RSEM.
- Compared to the simplified version that we considered, it models:
 - Fragment size.
 - Positional bias and transcript coverage.
 - ▶ 3' and 5' bias.
 - GC-content.
 - Strand-specificity.

See Patro et al. (2017) for details

OUTPUT

Salmon yields several files for each sample.

aux_info		ambig_info.tsv			
cmd_info.json		eq_classes.txt			
lib_format_counts.json		exp_gc.gz			
📄 libParams		exp3_seq.gz			
logs		exp5_seq.gz			
quant.sf		expected_bias.gz			
		l fld.gz			
Name	Lenath	EffectiveLenath	ТРМ	NumReads	
FBtr0300689	1880	1778.091	0.313895	108.834419	
FBtr0300690	1802	1679.369	0.000000	0.000000	
FBtr0330654	1844	1745.416	0.388321	132.165581	
FBtr0078170	5248	5524.612	2.794682	3010.663799	
FBtr0078171	5391	5701.112	2.489761	2767.867139	
FBtr0078166	5155	5407.390	1.946784	2052.738297	
FBtr0078167	5230	5498.154	0.002253	2.415510	
FBtr0078168	5225	5494.193	0.347060	371.823352	
FBtr0078169	5082	5332.590	0.216444	225.067139	
FBtr0306589	5315	5599.851	0.034544	37.720822	
FBtr0306590	5179	5439.720	0.030890	32.765518	

NORMALIZED EXPRESSION

- Both RSEM and Salmon return, in addition to expected counts, two expression measures:
 - FPKM
 - ► TPM
- They are both attempts at normalizing gene expression.
- Intuitively, the number of reads for each gene depends, in addition to its gene expression, on:
 - 1. Sequencing depth. E.g., if we sequence twice as many total reads, we will have on average double counts.
 - 2. Transcript length. I.e., the longer the transcript the more reads we are likely to sequence.

FPKM

TPM

Acronym of transcripts per million.

	$tpm_{i} = \frac{r_{i} \times L \times 10^{6}}{l_{i} \times R}$ Read length						
	$R = \sum_{i \in T}$	$\frac{r_i \times L}{l_i}$	Con expe	stant averag eriments	e value across		
Species	Tissue/cell type	Replicate	AvTPM	AvFPKM			
Human	Differentiated decidual cells	1	46.518	15.94			
		2	46.518	16.13			
Human	Un-differentiated dec. cells	1	46.518	15.27			
		2	46.518	15.22			
Human	Myofibroblast cells	1	46.518	17.66			
	-	2	46.518	17.65			
Human	Chondrocyte cells	1	46.518	16.57			
	-	2	46.518	16.57			
Human	Myometrial cells	1	46.518	17.77			
	-	2	46.518	17.79			

DATA REPRESENTATION

At the end of the quantification process, the data can be represented as a numeric matrix, which contains non-negative integers.

	Exp 1	Exp 2	•••	Exp n
Gene 1				
Gene 2				
•••				
Gene p				

• Very often $n \ll p$

DATA REPRESENTATION

- Columns correspond to statistical units (samples, individuals, cell lines, ...)
- Rows correspond to features (genes, transcripts)

	Exp 1	Exp 2	•••	Exp n
Gene 1				
Gene 2				
•••				
Gene p				

Furthermore, we often have additional information on genes and/or samples, often referred to metadata.

DATA REPRESENTATION IN R/BIOCONDUCTOR

