

Università degli Studi di Padova

CSAMA 2022 - BRIXEN/BRESSANONE

SINGLE-CELL RNA-SEQ

Davide Risso Ødrisso1893 Ødrisso

SINGLE-CELL RNA-SEQ

Sandberg (2014). Nature Methods.

SEVERAL PROTOCOLS AND PLATFORMS

Svensson, Vento-Tormo, Teichmann (2018). Nature Protocols.

DIFFERENT PROTOCOLS HAVE DIFFERENT PROPERTIES

DIFFERENT PROTOCOLS HAVE DIFFERENT PROPERTIES

Ziegenhain et al. (2017). Molecular Cell.

SINGLE-CELL RNA-SEQ IN A NUTSHELL

(1) Sample prepraration

AMPLIFICATION BIAS LEADS TO...

ONE GENOME FROM MANY

A single cell is difficult to isolate, but it can be done mechanically or with an automated cell sorter.

The DNA is extracted and amplified, during which errors can creep in.

Amplified DNA is sequenced.

Errors introduced in earlier steps make sequence assembly difficult; the final sequence can have gaps.

Owens (2012). Nature.

INCREASED VARIABILITY COMPARED TO "BULK" RNA-SEQ

EXCESS OF ZERO COUNTS

UNIQUE MOLECULAR IDENTIFIERS

Fig. 2. Schematic of a fragment from a final Chromium[™] Single Cell 3' v2 library. *Can be adjusted.

HIGH COMPLEXITY

HIGH DIMENSIONALITY AND SAMPLE SIZE

20M Cells

ALL CELLS

A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex

Received: 5 March 2020 Accepted: 26 March 2021 Published online: 6 October 2021 Open access Check for updates

Zizhen Yao^{1,32}, Hanqing Liu^{2,32}, Fangming Xie^{3,32}, Stephan Fischer^{4,32}, Ricky S. Adkins⁵, Andrew I. Aldridge², Seth A. Ament⁵, Anna Bartlett², M. Margarita Behrens⁶, Koen Van den Berge^{7,8}, Darren Bertagnolli¹, Hector Roux de Bézieux⁹, Tommaso A. Sina Booeshaghi¹¹, Héctor Corrada Bravo¹², Tamara Casper¹, Carlo Colantu Jonathan Crabtree⁵, Heather Creasy⁵, Kirsten Crichton¹, Megan Crow⁴, Nick Dee¹, Elizabeth L. Dougherty¹⁰, Wayne I. Doyle¹⁶, Sandrine Dudoit⁷, Rongxin Fang¹⁷, Victor Felix⁵, Olivia Fong¹, Michelle Giglio⁵, Jeff Goldy¹, Mike Hawrylycz¹, Brian R. Herb⁵, Ronna Hertzano^{5,18}, Xiaomeng Hou¹⁹, Qiwen Hu²⁰, Jayaram Kancherla¹², Matthew Kroll¹ Kanan Lathia¹, Yang Eric Li²¹, Jacinta D. Lucero⁶, Chongyuan Luo^{2,22,23}, Anup Mahurkar⁵, Delissa McMillen¹, Naeem M. Nadaf¹⁰, Joseph R. Nery², Thuc Nghi Nguyen¹, Sheng-Yong Niu², Vasilis Ntranos²⁴, Joshua Orvis⁵, Julia K. Osteen⁶, Thanh Pham¹, Antonio Pinto-Du Olivier Poirion¹⁹, Sebastian Preissl¹⁹, Elizabeth Purdom⁷, Christine Rimorin¹, Davide Risso Angeline C. Rivkin²³, Kimberly Smith¹, Kelly Street²⁶, Josef Sulc¹, Valentine Svensson¹¹ Michael Tieu¹, Amy Torkelson¹, Herman Tung¹, Eeshit Dhaval Vaishnav¹⁰ Charles R. Vanderburg¹⁰, Cindy van Velthoven¹, Xinxin Wang^{19,31}, Owen R. White⁵ Z. Josh Huang²⁷, Peter V. Kharchenko²⁰, Lior Pachter¹¹, John Ngai²⁸, Aviv Regev¹⁰ Bosiljka Tasic¹, Joshua D. Welch³⁰, Jesse Gillis⁴, Evan Z. Macosko¹⁰, Bing Ren^{19,21}, Joseph R. Ecker^{2,23}, Hongkui Zeng^{1⊠} & Eran A. Mukamel¹⁶⊠

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain¹⁻³. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcripton and epigenomes from more than 500,000 individual cells in the mouse primary mo cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and

A TYPICAL WORKFLOW

A TYPICAL WORKFLOW

Cell-level results such as clusters, cell labels, trajectory-based cell order added to colData(sce) Gene-level results such as differential expression and pathway annotations added to rowData(sce)

Accessible & Reproducible Analysis

Interactive Data Visualization	
Report Generation	

Interactive Data Visualization & Report Generation

Amezquita et al. (2020). Nature Methods.

THE SINGLECELLEXPERIMENT CLASS

SingleCellExperiment

Amezquita et al. (2020). Nature Methods.

DATA PROPERTIES

READ COUNT DISTRIBUTION

UMI COUNT DISTRIBUTION

(c) UMI counts- technical replicates

(d) UMI counts- biological replicates

LOG TRANSFORMATION DOES NOT HELP!

SHOULD WE MODEL ZERO INFLATION?

SHOULD WE MODEL ZERO INFLATION?

- Non-UMI data: very likely.
- UMI data: probably not.

EXPLORATORY DATA ANALYSIS!

Measurement vs expression models (<u>Sarkar & Stephens</u> <u>2021</u>)

Table 1 | Single-gene models for scRNA-seq data

Expression model	Observation model	Method ^ª
Point mass (no variation)	Poisson	Analytic
Gamma	Negative binomial	MASS ⁴¹ , edgeR ⁴² , DESeq2 (ref. ⁴³), SAVER ²⁰ , BASICS ⁴⁴
Point-Gamma	ZINB	PSCL ⁴⁵
Unimodal (nonparametric)	Unimodal	ashr ^{24,46}
Point-exponential family	Flexible	DESCEND ⁴
Fully nonparametric47	Flexible	ashr

Different expression models, when combined with the Poisson measurement model, yield different observation models. ^aPreviously published methods and software packages that use the corresponding observation model to analyze data.

Table 2 Multigene models for SCRNA-Seq data							
Link function	Noise distribution	Method ^a					
Identity	None	NMF ⁴⁸ , scHPF ⁴⁹					
Identity	Gamma	NBMF ⁵⁰					
log	None	GLM-PCA ¹⁹					
log	Gamma	scNBMF ⁵¹ , GLM-PCA ¹⁹					
log	Point-Gamma	ZINB-WaVE ⁵²					
Neural network	Point-Gamma	scVI ²⁹ , DCA ²¹					

Multigene models partition variation in true expression into structured and stochastic components. The link function describes a transformation and the noise distribution indicates an assumption about the stochastic component. ^aPreviously published methods and software packages that use the corresponding observation model to analyze data.

SHOULD WE MODEL ZERO INFLATION?

		π									
θ_0	μ_0	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.5	0.5	0.00	0.02	0.05	0.07	0.10	0.13	0.16	0.19	0.23	0.28
	5	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.36	0.42	0.50
	10	0.00	0.06	0.12	0.18	0.23	0.29	0.34	0.40	0.47	0.55
	15	0.00	0.07	0.13	0.19	0.25	0.31	0.37	0.43	0.50	0.58
	20	0.00	0.07	0.14	0.20	0.26	0.32	0.38	0.44	0.51	0.60
	25	0.00	0.08	0.15	0.21	0.27	0.33	0.39	0.46	0.52	0.61
5	0.5	0.00	0.03	0.06	0.09	0.12	0.15	0.19	0.23	0.27	0.33
	5	0.00	0.13	0.22	0.30	0.37	0.43	0.50	0.57	0.64	0.72
	10	0.00	0.19	0.28	0.36	0.43	0.50	0.57	0.63	0.70	0.79
	15	0.00	0.21	0.30	0.38	0.45	0.52	0.59	0.65	0.72	0.81
	20	0.00	0.21	0.31	0.39	0.46	0.53	0.59	0.66	0.73	0.82
	25	0.00	0.22	0.32	0.40	0.47	0.53	0.60	0.67	0.74	0.82

Table 1: Hellinger distance between zinb and NB distribution

QUALITY CONTROL AND FILTERING

DIMENSIONALITY REDUCTION

Wagner, Regev, Yosef (2016). Nature Biotechnology.

DIMENSIONALITY REDUCTION

We talk about "dimensionality reduction" when referring to two different goals:

- 1. Visualize high-dimensional data
 - Usually 2-3 dimensions
 - Non-linear, local techniques
- 2. Infer low-rank signal from high-dimensional data
 - Usually 10-50 dimensions
 - Factor analysis models

PRINCIPAL COMPONENT ANALYSIS (PCA)

- PCA is the starting point and baseline approach for both types of analysis.
- PCA can be used to visualize high-dimensional data in 2-3 dimensions.
- PCA can be seen as a solution of a factor analysis model for Gaussian data.

DESIRED PROPERTIES OF DIMENSIONALITY REDUCTION MODELS

- Accounting for the count nature of the data, overdispersion, and possibly zero inflation.
- General and flexible.
- Extract low-dimensional signal from the data.
- Adjust for complex effects (batch effects, sample quality).
- Scalable.

EXAMPLE: TABULA MURIS DATA

Tabula Muris is a project aimed at charcaterizing all cell types in the mouse.

The droplet dataset comprised 70,000 cells from 12 tissues.

We see here a random subset of 5,000 cells, limiting the dataset to the 1,000 most variable genes.

TabulaMurisData Bioconductor package.

TABULA MURIS: PCA (LOG SCALE)

TABULA MURIS: PCA AFTER SCRAN NORMALIZATION (LOG SCALE)

TABULA MURIS: T-SNE

TABULA MURIS: UMAP (ALL CELLS)

PCA IS A LINEAR METHOD

- One way to define the first principal component is: the linear combination of the original variables that explain the most variability in the data.
- Similarly, subsequent PCs are linear combinations of the original variables that are orthogonal to the first and explain the most variance among the orthogonal combinations.
- Are we limiting ourselves by only looking at linear combinations?
- Would a non-linear method have more flexibility in explaining our data?

T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)

- One option, very popular in single-cell genomics, is tdistributed Stochastic Neighbor Embedding (t-SNE).
- Briefly, the problem that we want to solve is to represent in a 2-3 dimensional map (*embedding*) the observations from a high-dimensional space preserving as much as possible the distance between points.

STOCHASTIC EMBEDDING: PROBABILISTIC REPRESENTATION OF DISTANCES

Similarity between two points, x_i and x_j in the original highdimensional space is given by

$$p_{j|i} = \underbrace{\exp\left(-\|x_i - x_j\|^2 / 2\sigma_i^2\right)}_{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / 2\sigma_i^2\right)},$$

The denominator scales the sum of all the scores to 1

- Essentially, the probability that x_i would pick x_j as its neighbor.
- We set $p_{i|i} = 0$ and actually use a symmetrized version that ensures $p_{ij} = p_{ji}$.

STOCHASTIC EMBEDDING: PROBABILISTIC REPRESENTATION OF DISTANCES

We could define a similar density in the *low-dimensional space*, but we use a t-distribution instead of a Gaussian kernel

The t distribution has heavier tails and partially account for the crowding problem.

T-SNE ALGORITHM

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}.$$

 $q_{ij} = \frac{\exp\left(-\|y_i - y_j\|^2\right)}{\sum_{k \neq l} \exp\left(-\|y_k - y_l\|^2\right)}, \qquad p_{ij} = \frac{\exp\left(-\|x_i - x_j\|^2/2\sigma^2\right)}{\sum_{k \neq l} \exp\left(-\|x_k - x_l\|^2/2\sigma^2\right)},$

We minimize the Kullback-Leibler (KL) divergence between the two distributions with gradient descent.

- It's not appropriate to have a single value of σ^2 as you need a smaller value in more dense regions.
- The user controls it through a parameter called perplexity
- Perplexity can have a big impact on the result!

 $Perp(P_i) = 2^{H(P_i)}, \qquad H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}, \qquad H(P_i) \text{ is the Shannon entropy of } P_i \text{ measured in bits}$

T-SNE ART, OR THE CHOICE OF THE PERPLEXITY PARAMETER

https://distill.pub/2016/misread-tsne/

LIMITATIONS OF T-SNE (AND UMAP)

- Unlike PCA, we do not have a simple interpretation for our low-dimensional embedding (the axes have "no meaning").
- t-SNE preserves only the local structure (who is neighbor of whom) but not the global structure
- There is no guarantee of convergence to the global minimum (non-convex problem), hence different runs will lead to different embeddings.
- Some argue that t-SNE and UMAP do not even preserve the local structure or the neighbors (Chari et al. 2021)

LIMITATIONS OF T-SNE (AND UMAP)

The "shape" of the data in the embedding is arbitrary.

FACTOR ANALYSIS

From a statistical model's perspective, we can state the problem using the following model

 $Y = W\alpha + \varepsilon$

FACTOR ANALYSIS

The goal is to find $k \ll J$ factors that descrive, with the minimum possible loss of information, the *J* original variables (genes).

We can show that if ε (or equivalently *Y*) is Gaussian, a solution of the model is PCA.

ADVANTAGES OF PCA

In one word: interpretability!

- The first principal component is the direction of greater variability in the data.
- It is easy to compute the variance explain by the first m principal components.
- Very computationally efficient.

SO... WHY NOT PCA?

The main issue of PCA for single-cell data is that the data are non-negative integer counts, which exhibit skewed distributions and are not well fit by a Gaussian model.

A simple, and somewhat effective, solution is to transform the data, e.g., by log(x + 1), but this is not always straightforward:

- Which transformation to use?
- Do we need to normalize the data for sequencing depth and other cell-specific effects?
- Zero counts complicate the analysis.

REMEMBER THE EFFECT OF LOG TRANSFORMATION...

GLM-PCA

One alternative to transforming the data, is to generalize our model to non-Gaussian data.

This can be done by defining a set of models, known as GLM-PCA () that extend the framework to a set of well behaving distributions (exponential family) similar to how GLM extends the linear model.

In particular, since we have count data, we can use the Poisson or negative binomial model, which has a log link function.

$$E[Y|W] = \mu, \qquad \log \mu = W\alpha$$

Townes et al. (2019). *Genome Biology.* <u>scry package</u>

GLM-PCA / WANTED VARIATION EXTRACTION

A further generalization allows us to include *observed covariates* in the model. These can be covariates at the cell and gene level and it is useful for normalization and batch effect correction.

Risso et al. (2018). *Nature Communications*. <u>NewWave package</u>

TABULA MURIS: PCA AFTER SCRAN NORMALIZATION (LOG SCALE)

TABULA MURIS: GLM-PCA (POISSON)

GLMPCA 2

TABULA MURIS: NEWAVE (NEGATIVE BINOMIAL)

newWave 2

SCALABILITY

SCALABILITY

- Townes et al. (2019) propose an approximate approach to speed up computations.
- Essentially, they compute Pearson or deviance residuals of a GLM fit on each gene independently, and then compute PCA of the rediduals.
- A similar approach, correspondence analysis, uses chisquared Pearson residuals + PCA/SVD.
- These methods are implemented in the <u>scry</u> and <u>corral</u> Bioconductor packages, respectively.

WHICH SHOULD I USE?

MORE QUESTIONS THAN ANSWERS

- How many factors should I estimate?
- Should I include covariates? Which ones?
- If PCA, should I center/scale?
- Which data transformations should I use?
- Which normalization should I use?
- Why not deep neural networks? (That should take care of it!)
- Importance of simple models and interpretability of the solutions.

TAKE-HOME MESSAGE

- t-SNE / UMAP are fine for visualization
- Do not use them for inference (e.g., clustering)
- Linear/more interpretable techniques should be preferred

