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This report reviews current developments in Bioconductor, including low-level microarray analysis tools, con-
tributions to analysis of gene expression data, pure computing, annotation, and training and dissemination efforts.

1 Microarray Data Analysis

1.1 Pre-processing Spotted DNA Microarray Data

Image analysis.The raw data from a microarray experiment are the image files produced by the scanner; these
are typically pairs of 16-bit tagged image file format (TIFF) files, one for each fluorescent dye. Image analysis is
required to extract foreground and background fluorescence intensity measurements for each spotted DNA sequence.
We have developed novel methods for processing microarray images, based on seeded region growing segmentation
and morphological opening background adjustment (19). These procedures are implemented in an R package,Spot
(2).

Normalization.The purpose ofnormalizationis to identify and remove the effects of systematic variation (ob-
scuring variation), for example different labeling efficiencies and scanning properties of the Cy3 and Cy5 dyes;
different scanning parameters, such as PMT (photomultiplier tube) settings; print-tip, spatial, or plate effects, other
than differential expression (interesting variation) in the measured fluorescence intensities. It is necessary to normal-
ize the fluorescence intensities before any analysis that involves comparing expression measures within or between
slides (e.g., classification, multiple testing) in order to ensure that differences in intensities are indeed due to differ-
ential expression and not experimental artifacts. We have developed location and scale normalization methods which
correct for intensity, spatial, and other dye biases usingrobust locally weighted regression(5; 20; 21). Themarray
suite of packages provides functions for exploratory analysis and pre-processing of spotted DNA microarray data,
including the robust adaptive normalization procedures mentioned above (11).

marrayClasses This package provides the basic class structure and associated methods for handling pre- and
post-normalization intensity data and data on probes and targets for batches of arrays.

marrayInput This package provides functionality for reading microarray data into R, such as intensity data
from image processing output files (e.g.,.spot and .gpr files for theSpot and GenePix packages,
respectively) and textual information on probes and targets (e.g., from.gal files and god lists).

marrayPlots Examination of diagnostic plots of intensity data is important in order to identify printing, hy-
bridization, and scanning artifacts that can lead to biased inferences concerning gene expression. This pack-
age provides functions for diagnostic plots of microarray spot statistics, such as boxplots, scatterplots (e.g.,
MA-plots of intensity log ratioM = log2R/G vs. the average log intensityA = log2

√
RG), and spatial color

images. Plots can be stratified according to various array layout parameters, such as sector and plate origin of
the clones.
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marrayNorm This package implements robust adaptive location and scale normalization procedures, which cor-
rect for different types of dye biases (e.g., intensity, spatial, plate biases) and allow the use of control sequences
spotted onto the array and possibly spiked into the mRNA samples.

1.2 Pre-processing Affymetrix Oligonucleotide GeneChip Data

Image processing and normalization are two of the main pre-processing steps required in any microarray experiment.
In addition, when dealing with Affymetrix high density oligonucleotide arrays, finding appropriate summaries of the
probe-level data, that accurately represent the amount of corresponding target mRNA, is an important and challeng-
ing problem. Li and Wong (17) pioneered alternatives to standard measures offered by the Affymetrix software (e.g.,
MAS 4.0 and 5.0). Irizarry et al. (15) assessed the accuracy and precision of the three leading measures, namely
those obtained from MAS 4.0, MAS 5.0, and dChip, using spike-in and dilution experiments. Through the careful
exploration of probe-level data, they developed a mapping from probe-level intensities to expression measures, the
robust multi-array analysis (RMA), that outperform the three other measures.

The Bioconductoraffy package was developed as an extensible, interactive environment for the exploration of
Affymetrix GeneChip probe-level data. As described in the letters of support, various scientist have found it to be a
useful tool.

One of the most popular applications of theaffy package is mapping probe level data to expression measures.
To facilitate incorporation of new expression measures, we have modularized the code involved in this mapping into
the following steps,

1. background correction;

2. normalization;

3. probe specific background correction, e.g., subtractingMM;

4. summarizing the probe set values into one expression measure and, in some cases, a standard error for this
summary.

The package was used to develop RMA and as ideas emerge for improved expression measures, the package can
be used to test them. The most popular versions can be implemented in C for efficiency and speed, as has been done
for RMA in version 1.1 of the package.

In addition, theaffy package provides a variety of functions for diagnostic plots of probe-level data. These
include 2D spatial images of the probe-level intensities (or transformations of the intensities, such as log transforma-
tion) as they appear on the array. Such images are usually a first step in quality control and are especially useful for
finding spatial artifacts. The histogram method permits the user to explore the distribution of the probe-level data of
each array and can be used, for example, to detect saturation problems (as indicated by a mode near the maximum
allowable intensity). In a similar way, the boxplot method allows the user to explore the distribution of intensities
for multiple arrays and can be used to detect arrays that are behaving differently from the rest in global way.

1.3 Identification of Differentially Expressed Genes

Starting from very different data structures, both theaffy andmarray packages produce gene expression measures
that can be represented in R objects of classexprSet (seeBiobase package and discussion of experimental
metadata in Section3). This modular approach allows the end-user to rely on the full Bioconductor infrastructure
for expression level analyses.

An important and common question in microarray experiments is the identification of differentially expressed
genes, i.e., genes whose expression levels are associated with a response or covariate of interest (e.g., survival, tumor
class). There are many different approaches that can be taken but, to date, most consider each gene individually and
selectinteresting genesbased on criteria such as fold-change or t-statistics. These methods can be extended by
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considering the problem from a multivariate point of view or by including exploratory and diagnostic methods in the
selection process.

While simple tools can provide selection criteria for relatively simple experiments, once the experimental design
becomes more complex so does the analysis. We have developed a number of tools aimed at handling these more
complex experimental structures. Examples of experiments include time-course experiments, factorial designed
experiments, and comparisons of duration (survival or remission). The approach taken in the software package
genefilter allows researchers to apply any analysis function found in R to select genes in this one-at-a-time
approach. Additionally, any diagnostic checks desired are easily accommodated within the same computational
framework (e.g., based on coefficient of variation and/or minimum intensity). Additional tests can be devised,
implemented, and used without special requirements.

The biological question of differential expression can be restated as a problem in multiple hypothesis testing:
the simultaneous test for each gene of the null hypothesis of no association between the expression levels and
the responses or covariates. As a typical microarray experiment measures expression levels for thousands of genes
simultaneously, large multiplicity problems are generated. Themulttest package implements permutation based-
multiple testing procedures for controlling the family-wise error rate (FWER) and the false discovery rate (FDR).
Methodology implemented in this package was used to identify differentially expressed genes in a study of host
genomic responses to bacterial infection (1), in a study of gene expression in mice with the apo AI gene knocked-out
(3; 12), and in a study of gene expression in liver tumors (4).

A study of gene expression patterns as they relate to endometrial neoplastic transformation (18) was carried out
using various statistical techniques, including a permutation approach to detecting significance. The methodology
developed for this approach is distributed in the R packagepermax .

Irizarry et al. (16) considered statistical issues in the analysis of a designed experiment to investigate differential
gene expression in colon cancer and normal colon tissue. In this experiment, gene expression was measured using
radiolabeling-based array filters. Specific statistical issues arise in connection with radiolabeling technology, because
of the absence of direct controls, which are replaced by empty spots on the filter, and with designed experiments,
because of the opportunity to systematically quantify important sources of random variation. This paper considers
three aspects in detail: normalization of expression intensities; shrinkage estimates of intensity ratios between cancer
and normal tissue; and ranking of genes by the strength of the evidence that they are differentially expressed. Robust
and simple-to-implement procedures for normalization and shrinkage, that addresses in a technology-specific way
the problem of estimating ratios in the presence of small and noisy denominators, were proposed. A graphical display
to rank genes using a metric based on quantiles of a null distribution obtained by replicating the array experiment in
normal tissue was discussed.

1.4 Multivariate Analysis and Computational Inference

Many of the principal investigators have interests in multivariate statistical learning methods and computational in-
ference. Multivariate methods for cluster analysis, class prediction, variable selection, and multiple testing are highly
relevant for extracting biological knowledge from large and complex genomic dataset. For instance, in microarray
cancer research, cluster analysis can be used to identify groups of genes with similar expression patterns across
tumor samples and to identify previously unrecognized subclasses of tumors with distinct molecular and clinical
characteristics. Classification methods are important tools in microarray experiments, for the purpose of classifying
biological samples and predicting clinical or other outcomes using gene expression data. Extreme forms of mul-
tiple hypothesis testing are encountered in DNA microarray studies which involve detecting associations between
biological responses and expression measures for thousands of genes simultaneously.

Computational inference methods, such as Markov chain Monte Carlo, the bootstrap, cross-validation, and per-
mutation procedures, can be applied to address a variety of inferential problems in genomics, and are particularly
useful in situations where the distributions of the statistics of interest are difficult to obtain. Areas of application
include exploratory data analysis, multiple testing, class prediction, variable selection. Some of our contributions to
the fields of computational inference and multivariate analysis are summarized next.
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Exploratory data analysis.We have developed new methods for expression density diagnostics, including graph-
ical and pattern recognition algorithms for distribution shape classification (seeedd package). We have begun to
develop exploratory analysis procedures based on graph theoretical notions (seegraph package).

Multiple testing.We have studied the Type I error and power properties of a broad range of multiple testing pro-
cedures in the context of microarray data analysis (10). We have developed permutation procedures for estimating
adjustedp-values for a class of multiple testing procedures controlling the family-wise error rate (14). The Bio-
conductor packagemulttest implements some of these novel procedures. In addition, we have applied multiple
testing procedures to identify differentially expressed genes in microarray experiments (1; 3; 4; 12).

Statistical learning.We have introduced a novel prediction-based resampling method,Clest , to estimate the
number of clusters, if any, in a dataset(8). We have developed two bagged clustering procedures to improve and
assess the accuracy of a partitioning clustering method (6). We have also investigated the performance of different
prediction methods for the classification of tumors based on gene expression data (7; 9). The methods include:
nearest neighbor classifiers, linear discriminant analysis, support vector machines, and classification trees. Recent
machine learning approaches such as bagging and boosting were also considered .

1.5 Visualization

Clustering methods have been used extensively and successfully in microarray experiments to organize and display
very large genes-by-arrays data matrices. Eisen et al. (13) presented the first clustered display of gene expression
data. Software enabling these visualization methods, Cluster and TreeView, is available from the Eisen Lab at
rana.lbl.gov . The usefulness of these tools has seen their adoption in a wide variety of software packages.

Thegeneplotter package provides initial implementations of visualization methods that can be used to as-
sociate experimentally derived data with the biological metadata. In our case, we are reliant on data in Bioconductor
packages since they are updatable, distributable, and are implemented in an efficient manner so that look-up is rea-
sonable fast. These plots include whole genome views as well as per chromosome views of mRNA expression
data.

A number of graphical utilities have been provided in theAffy package to support low-level analysis of oligonu-
cleotide arrays, and in themarrayPlots package to support analysis of spotted DNA arrays. The use of classes
and method overloading adds convenience to the resulting toolset, because users familiar with the graphical functions
from common data analysis activities have a smooth transition to visualizing genomic data.

For oligo arrays, overall chip appearance can be inspected using animage method. Probeset-specific barplots
of probe-pair intensities can be generated using the Affy ID, and appropriate use of annotation resources allows
generation of such plots on the basis of various nomenclatures. Overall intensity distributions can be obtained using
a boxplot method. MA-plots can be generated in a scatterplot matrix for a family of arrays.

For spotted DNA arrays, high-level routines are available for pre- and post-normalization diagnosis. Thema-
DiagnPlots1 routine in themarrayPlots package produces eight plots of pre- and post-normalization cDNA
microarray data: color images of Cy3 and Cy5 background intensities, and of pre- and post-normalization log-ratios
M; boxplots of pre- and post-normalization log-ratios M by print-tip-group; MA-plots of pre- and post-normalization
log-ratios M by print-tip-group.

2 Computing

2.1 R Runtime and Data Interchange

We have enhanced theR runtime system in a number of ways that improve performance and also enhanceR’s ability
to take advantage of separate libraries and other software components. We developed a new non-moving generational
memory management system that effectively handles the large amount of temporary memory allocation needed by
a dynamic system likeR but does not move objects in memory. This greatly simplifies passing values allocated
in R to external subroutines. The memory manager also includes support for external references, weak references,
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and finalization. These are needed to allow entities allocated outside ofR’s heap, perhaps in a shared library or
on a remote machine, to be accessed reliably from withinR and allows theR memory management system to
automatically manage the lifetime of these resources.

A profiling system has been added toR that allows accurate identification of computational hot spots. This
allows developers to more effectively target their efforts to improve performance when this proves necessary for the
effectiveness of an algorithm.

The serialization mechanism inR has been revised to allow effective serialization of arbitrary chunks ofR data
and code. This allows the development of flexible persistent storage mechanisms, for example using relational or
object databases, and also provides the basis for transmitting code and data for remote execution. The default format
used is a portable binary format designed for efficiency of access and storage. The mechanism can easily be adapted
to use other formats such as SOAP.

We have begun preliminary work on developing a name space mechanism, a framework for byte code compila-
tion, a high level exception handling system, and support for concurrent threads of execution.

2.2 Netscape-based Interface to R

The delivery of advanced analytic methods to biologists may be substantially enhanced by providing a browser-
based interface to the associated software tools. Browser-based use of R can occur through the SNetscape plugin
available atwww.omegahat.org . However, a simpler method for mediating use of R through any browser using
HTML and HTTP involves R’s generic socket connection facility. A very preliminary version has been supplied as
packageHTTPapp at the Bioconductor CVS repository.

3 Annotation

3.1 Experimental Metadata

Many of the basic microarray data classes have been designed and implemented, and these classes reflect the struc-
ture of the underlying experimental materials and of the processes by which they are transformed into numerical and
textual data. A basic requirement for orderly auditing and interpretation of an analysis is standardized structured
information on the conduct of the experiment. We will refer to such information asexperimental metadata. Biocon-
ductor provides support for MIAME-compliant documentation of collections of expression experiments. There are
two primary contact points at which MIAME information can be supplied or extracted. Within theaffy package
various classes contain CEL file data support the addition of MIAME compliant documentation. This documentation
will be propagated to theexprSet objects defined in theBiobase and hence will be available to the data analyst.
This system will be enhanced and extended to themarray suite of functions.

3.2 Biological Metadata

Mappings from oligonucleotide probe to LocusLink ID, and from LocusLink ID to Gene Ontology term or chromo-
somal location are all examples ofbiological metadata. Bioconductor possesses advanced utilities for creating and
using such metadata.

The problem of annotating results of expression array experiments was recognized and confronted at the in-
ception of the Bioconductor project. We aimed at the construction of a software framework, in contrast to a fixed
annotation processor or database, acknowledging the following issues emerging in the design of software that helps
manage associations of biological metadata with experimentally obtained:

1. evolution condition:the biological metadata are in flux as research matures;

2. commonality condition:there is some commonality of metadata and metadata requirements across species
and across measurement instruments;
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3. disclosure sensitivity:data (either experimental or annotation) may be subject to privacy controls (human
subjects or proprietary constraints);

4. magnitude:for most species there is far too much metadata available to easily provide access to all relevant
data without significant curation.

The evolution condition implies that a flexible design will be needed, with sharp limitation of assumptions about the
underlying structure and content of biological metadata such as gene nomenclature or chromosomal mapping. The
commonality conditions imply that abstractions will be productive: tool design should not capitalize too strongly
on species-specific or instrument-specific features, but should always consider the possibility of embracing a wider
class of species or instruments. In particular, interest will be strong in supporting combinations of results obtained
from related but non-identical measurement systems. The disclosure-sensitivity condition implies that mechanisms
for enhancing information security should be available. The final magnitude condition has two main implications.
First, mechanisms for scaling down the resource and management activities to investigator-specified foci will be
valuable. Second, it is likely that there will be conflicts among the various metadata resources corresponding to
a given biological datum, and methods for conflict resolution (for example, support for weighted combination of
sources leading to a decision) will be useful.

TheAnnBuilder annotation system-building framework of Bioconductor confronts the evolution, common-
ality, and magnitude conditions of biological metadata. AnnBuilder is a collection of R functions, scripts in Perl
and PostgreSQL, XML Document Type Definitions (DTDs), and documentation to define programming and data
structure activities that support creation and curation of general genomic annotation resources.

3.3 Packaging Biological Metadata

In most situations the end-user is analyzing data from a particular instrument or technology. It therefore makes
sense to package the data correspondingly. One of the roles ofAnnBuilder is to facilitate the production of such
data packages. We routinely produce and distribute data packages for Affymetrix HGU133a, the 5 segments of
HGU95 (a-e), Hu6800, murine MGU74a, and rat RGU34a. Each of these environments maps between chip probe
IDs and GenBank accession, gene symbol, gene name, UniGene cluster ID, locusLink ID, chromosome location and
orientation, PubMed unique IDs, summary of function, gene ontology ID, enzyme commission identifier, pathway
name, and certain reverse mappings (such as pathway name to Affymetrix ID).

Hash tables are also provided for ’chip description files’ (CDFs) for the aforementioned Affymetrix chips and
some others, include huSNP. These provide detailed geometric information on locations of perfect-match and mis-
match sequences for probe sets.

The distribution of these packages is handled by functionality contained in thereposTools package. These
tools allow the user to perform package management (updating and installation) over the Internet via a specific set
of interfaces. The same tools are used to manage the data packages as to manage the standard R analysis packages.

3.4 Utilities for Mining Textual Metadata

The PubMed-related utilities of theannotate package provide various paths into the PubMed bibliographic re-
sources related to genomics. Given a vector of PubMed IDs linked to gene products we make use of the Web Services
offered by the NLM and obtain the associated data via anhttp request. Subsequently thepubmed function will
extract the associated XML DOM tree (providing access in R to textual data such as the abstract, the chemicals
involved in associated publications) or create a browser page with the associated links.

4 Training and Dissemination

We have already made significant progress in the creation of a training infrastructure promoting the effective use and
development of computational and statistical methods in bioinformatics. The materials for these courses are freely
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available from our Web site and are updated and extended regularly. Courses can be tailored to two different types
of audiences, statisticians that would like to know more about computational biology and biologists who would like
to know more about the statistical and computational methodology they are using.

These courses provide a number of benefits for the research being proposed here. These include opportunities
for the PI’s named in this grant to meet and work together for a few days. They introduce the software and design
of Bioconductor to a wide audience. Perhaps most importantly they expose us to a wide variety of users from whom
we can learn a great deal. These users provide valuable feedback both on what is working and they also often make
feature or task requests. Such feedback is essential to good software design.

One of the most difficult aspects of disseminating this software will be to provide good explanations of how to
assemble the data and analyze it with the software. We have begun exploring a novel strategy for developing and
distributing these explanations. They take the form of ahow-todocument that we will refer to as a vignette. The
document is a mix of code and text (modeled along the lines of literate programming). There are special software
tools (already developed) that will automatically run all code in all vignettes and report any problems or errors that
occur. This will allow us to ensure that documentation keeps pace with code development.
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