
goseq: Gene Ontology testing for RNA-seq datasets

Matthew D. Young Nadia Davidson Matthew J. Wakefield
Gordon K. Smyth Alicia Oshlack

8 September 2017

1 Introduction
This document gives an introduction to the use of the goseq R Bioconductor package [Young et al.,
2010]. This package provides methods for performing Gene Ontology analysis of RNA-seq data,
taking length bias into account [Oshlack and Wakefield, 2009]. The methods and software used
by goseq are equally applicable to other category based test of RNA-seq data, such as KEGG
pathway analysis.

Once installed, the goseq package can be easily loaded into R using:

> library(goseq)

In order to perform a GO analysis of your RNA-seq data, goseq only requires a simple named
vector, which contains two pieces of information.

1. Measured genes: all genes for which RNA-seq data was gathered for your experiment. Each
element of your vector should be named by a unique gene identifier.

2. Differentially expressed genes: each element of your vector should be either a 1 or a
0, where 1 indicates that the gene is differentially expressed and 0 that it is not.

If the organism, gene identifier or category test is currently not natively supported by goseq,
it will also be necessary to supply additional information regarding the genes length and/or the
association between categories and genes.

Bioconductor R packages such as Rsubread allow for the summarization of mapped reads into
a table of counts, such as reads per gene. From there, several packages exist for performing
differential expression analysis on summarized data (eg. edgeR [Robinson and Smyth, 2007, 2008,
Robinson et al., 2010]). goseq will work with any method for determining differential expression
and as such differential expression analysis is outside the scope of this document, but in order to
facilitate ease of use, we will make use of the edgeR package to calculate differentially expressed
(DE) genes in all the case studies in this document.

1

2 Reading data
We assume that the user can use appropriate in-built R functions (such as read.table or scan)
to obtain two vectors, one containing all genes assayed in the RNA-seq experiment, the other
containing all genes which are DE. If we assume that the vector of genes being assayed is named
assayed.genes and the vector of DE genes is named de.genes we can construct a named vector
suitable for use with goseq using the following:

> gene.vector <- as.integer(assayed.genes %in% de.genes)
> names(gene.vector) <- assayed.genes
> head(gene.vector)

It may be that the user can already read in a vector in this format, in which case it can then
be immediately used by goseq.

3 GO testing of RNA-seq data
To begin the analysis, goseq first needs to quantify the length bias present in the dataset under
consideration. This is done by calculating a Probability Weighting Function or PWF which can
be thought of as a function which gives the probability that a gene will be differentially expressed
(DE), based on its length alone. The PWF is calculated by fitting a monotonic spline to the binary
data series of differential expression (1=DE, 0=Not DE) as a function of gene length. The PWF is
used to weight the chance of selecting each gene when forming a null distribution for GO category
membership. The fact that the PWF is calculated directly from the dataset under consideration
makes this approach robust, only correcting for the length bias present in the data. For example,
if goseq is run on a microarray dataset, for which no length bias exists, the calculated PWF will
be nearly flat and all genes will be weighted equally, resulting in no length bias correction.

In order to account for the length bias inherent to RNA-seq data when performing a GO
analysis (or other category based tests), one cannot simply use the hypergeometric distribution as
the null distribution for category membership, which is appropriate for data without DE length
bias, such as microarray data. GO analysis of RNA-seq data requires the use of random sampling
in order to generate a suitable null distribution for GO category membership and calculate each
categories significance for over representation amongst DE genes.

However, this random sampling is computationally expensive. In most cases, the Wallenius
distribution can be used to approximate the true null distribution, without any significant loss in
accuracy. The goseq package implements this approximation as its default option. The option
to generate the null distribution using random sampling is also included as an option, but users
should be aware that the default number of samples generated will not be enough to accurately
call enrichment when there are a large number of go terms.

2

Having established a null distribution, each GO category is then tested for over and under
representation amongst the set of differentially expressed genes and the null is used to calculate a
p-value for under and over representation.

4 Natively supported Gene Identifiers and category tests
goseq needs to know the length of each gene, as well as what GO categories (or other categories
of interest) each gene is associated with. goseq relies on the UCSC genome browser to provide
the length information for each gene. However, because the process of fetching the length of every
transcript is slow and bandwidth intensive, goseq relies on an offline copy of this information
stored in the data package geneLenDataBase. To see which genome/gene identifier combinations
are in the local database, simply run:

> supportedOrganisms()

The leftmost columns in the output of this command list the genomes and gene identifiers respec-
tively. If length data exists in the local database it is indicated in the second last column. If your
genome/ID combination is not in the local database, it may be downloaded from the UCSC genome
browser or taken from a TxDb annotation package (if installed). If your genome/ID combination
is not found in any database, you will have to manually specify the gene lengths. We encourage
all users to manually specify their gene lengths if provided by upstream summarization programs.
e.g. featureCounts, as these lengths will be more accurate.

In order to link GO categories to genes, goseq uses the organism packages from Bioconductor.
These packages are named org.<Genome>.<ID>.db, where <Genome> is a short string identify-
ing the genome and <ID> is a short string identifying the gene identifier. Currently, goseq will
automatically retrieve the mapping between GO categories and genes from the relevant package
(as long as it is installed) for commonly used genome/ID combinations. If GO mappings are not
automatically available for your genome/ID combination, you will have to manually specify the
relationship between genes and categories. Although the Genome/ID naming conventions used by
the organism packages differ from the UCSC, goseq is able to convert between the two, so the user
need only ever specify the UCSC genome/ID in most cases. The final column indicates whether
the Genome/ID combination is supported for GO categories.

5 Non-native Gene Identifier or category test
If the organism, Gene Identifier or category test you wish to perform is not in the native goseq
database, you will have to supply one or all of the following:

• Length data: the length of each gene in your gene identifier format.

3

• Category mappings: the mapping (usually many-to-many) between the categories you wish
to test for over/under representation amongst DE genes and genes in your gene identifier
format.

5.1 Length data format

The length data must be formatted as a numeric vector, of the same length as the main named
vector specifying gene names/DE genes. Each entry should give the length of the corresponding
gene in bp. If length data is unavailable for some genes, that entry should be set to NA.

5.2 Category mapping format

The mapping between category names and genes should be given as a data frame with two columns.
One column should contain the gene IDs and the other the name of an associated category. As
the mapping between categories and genes is usually many-to-many, this data frame will usually
have multiple rows with the same gene name and category name.

Alternatively, mappings between genes and categories can be given as a list. The names of
list entries should be gene IDs and the entries themselves should be a vector of category names to
which the gene ID corresponds.

5.3 Some additional tips

Any organism for which there is an annotation on either Ensembl or the UCSC, can be easily turned
into length data using the GenomicFeatures package. To do this, first create a TranscriptDb object
using either makeTxDbFromBiomart or makeTxDbFromUCSC (see the help in the GenomicFea-
tures package on using these commands). Once you have a transcriptDb object, you can get a
vector named by gene ID containing the median transcript length of each gene simply by using
the command.

> txsByGene <- transcriptsBy(txdb, "gene")
> lengthData <- median(width(txsByGene))

The relationship between gene identifier and GO category can usually be obtained from the
Gene Ontology website (www.geneontology.org) or from the NCBI. Additionally, the bioconductor
AnnotationDbi library has recently added a function "makeOrgPackageFromNCBI", which can
be used to create an organism package from within R, using the NCBI data. Once created, this
package can then be used to obtain the mapping between genes and gene ontology.

4

6 Case study: Prostate cancer data

6.1 Introduction

This section provides an analysis of data from an RNA-seq experiment to illustrate the use of
goseq for GO analysis.

This experiment examined the effects of androgen stimulation on a human prostate cancer cell
line, LNCaP. The data set includes more than 17 million short cDNA reads obtained for both the
treated and untreated cell line and sequenced on Illumina’s 1G genome analyzer.

For each sample we were provided with the raw 35 bp RNA-seq reads from the authors. For
the untreated prostate cancer cells (LNCaP cell line) there were 4 lanes totaling 10 million, 35
bp reads. For the treated cells there were 3 lanes totaling 7 million, 35 bp reads. All replicates
were technical replicates. Reads were mapped to NCBI version 36.3 of the human genome using
bowtie. Any read with which mapped to multiple locations was discarded. Using the ENSEMBL
54 annotation from biomart, each mapped read was associated with an ENSEMBL gene. This was
done by associating any read that overlapped with any part of the gene (not just the exons) with
that gene. Reads that did not correspond to genes were discarded.

6.2 Source of the data

The data set used in this case study is taken from [Li et al., 2008] and was made available from
the authors upon request.

6.3 Determining the DE genes using edgeR

To begin with, we load in the text data and convert it the appropriate edgeR DGEList object.

> library(edgeR)
> table.summary <- read.table(system.file("extdata", "Li_sum.txt", package = "goseq"),
+ sep = "\t", header = TRUE, stringsAsFactors = FALSE
+)
> counts <- table.summary[, -1]
> rownames(counts) <- table.summary[, 1]
> grp <- factor(rep(c("Control", "Treated"), times = c(4, 3)))
> summarized <- DGEList(counts, lib.size = colSums(counts), group = grp)

Next, we use edgeR to estimate the biological dispersion and calculate differential expression
using a negative binomial model.

> disp <- estimateCommonDisp(summarized)
> disp$common.dispersion

5

[1] 0.05688364

> tested <- exactTest(disp)
> topTags(tested)

Comparison of groups: Treated-Control
logFC logCPM PValue FDR

ENSG00000127954 11.557868 6.680748 2.574972e-80 1.274766e-75
ENSG00000151503 5.398963 8.499530 1.781732e-65 4.410321e-61
ENSG00000096060 4.897600 9.446705 7.983755e-60 1.317479e-55
ENSG00000091879 5.737627 6.282646 1.207655e-54 1.494654e-50
ENSG00000132437 -5.880436 7.951910 2.950042e-52 2.920896e-48
ENSG00000166451 4.564246 8.458467 7.126762e-52 5.880291e-48
ENSG00000131016 5.254737 6.607957 1.066807e-51 7.544765e-48
ENSG00000163492 7.085400 5.128514 2.716461e-45 1.681014e-41
ENSG00000113594 4.051053 8.603264 9.272066e-44 5.100254e-40
ENSG00000116285 4.108522 7.864773 6.422468e-43 3.179507e-39

Finally, we Format the DE genes into a vector suitable for use with goseq

> genes <- as.integer(p.adjust(tested$table$PValue[tested$table$logFC != 0],
+ method = "BH"
+) < .05)
> names(genes) <- row.names(tested$table[tested$table$logFC != 0,])
> table(genes)

genes
0 1

19535 3208

6.4 Determining Genome and Gene ID

In order to allow for automatic data retrieval, the user has to tell goseq what genome and gene
ID format were used to summarize the data. In our case we will use the hg19 build of the human
genome, we check what code this corresponds to by running:

> head(supportedOrganisms())

Genome Id Id Description Lengths in geneLeneDataBase
138 Arabidopsis FALSE
139 E. coli K12 FALSE
140 E. coli Sakai FALSE
141 Malaria FALSE

6

1 anoCar1 ensGene Ensembl gene ID TRUE
2 anoGam1 ensGene Ensembl gene ID TRUE

GO Annotation Available
138 TRUE
139 TRUE
140 TRUE
141 TRUE
1 FALSE
2 TRUE

Which lists the genome codes in the far left column, headed “Genome”. As we are using “hg19"
and we also know that we used ENSEMBL Gene ID to summarize our read data, we check what
code this corresponds to by running:

> supportedOrganisms()[supportedOrganisms()$Genome == "hg19",]

Genome Id Id Description Lengths in geneLeneDataBase
25 hg19 ensGene Ensembl gene ID TRUE
48 hg19 knownGene Entrez Gene ID TRUE
81 hg19 geneSymbol Gene Symbol TRUE

GO Annotation Available
25 TRUE
48 TRUE
81 TRUE

The gene ID codes are listed in the column second from left, titled “Id”. We find that our gene
ID code is “ensGene". We will use these strings whenever we are asked for a genome or id. If the
gene ID is missing for your Genome (for example this is the case for hg38), then the genome is
not supported in the geneLengthDatabase. Gene lengths will either be automatically fetched from
TxDB, UCSC or you will need to provide them manually. Supported Gene IDs to automatically
fetch GO terms should usually either be Entrez (“knownGene"), Ensembl (“ensGene") or gene
symbols (“geneSymbol").

6.5 GO analysis

6.5.1 Fitting the Probability Weighting Function (PWF)

We first need to obtain a weighting for each gene, depending on its length, given by the PWF.
As you may have noticed when running supportedGenomes or supportedGeneIDs, length data is
available in the local database for our gene ID, “ensGene" and our genome, “hg19". We will let
goseq automatically fetch this data from its databases.

> pwf <- nullp(genes, "hg19", "ensGene")
> head(pwf)

7

DEgenes bias.data pwf
ENSG00000230758 0 247 0.03757470
ENSG00000182463 0 3133 0.20436865
ENSG00000124208 0 1978 0.16881769
ENSG00000230753 0 466 0.06927243
ENSG00000224628 0 1510 0.15903532
ENSG00000125835 0 954 0.12711992

0 2000 4000 6000 8000 10000 12000

0.
05

0.
10

0.
15

0.
20

0.
25

Biased Data in 500 gene bins.

P
ro

po
rt

io
n

D
E

nullp plots the resulting fit, allowing verification of the goodness of fit before continuing the
analysis. Further plotting of the pwf can be performed using the plotPWF function.

The output of nullp contains all the data used to create the PWF, as well as the PWF itself.
It is a data frame with 3 columns, named "DEgenes", "bias.data" and "pwf" with the rownames
set to the gene names. Each row corresponds to a gene with the DEgenes column specifying if the
gene is DE (1 for DE, 0 for not DE), the bias.data column giving the numeric value of the DE bias

8

being accounted for (usually the gene length or number of counts) and the pwf column giving the
genes value on the probability weighting function.

6.5.2 Using the Wallenius approximation

To start with we will use the default method, to calculate the over and under expressed GO
categories among DE genes. Again, we allow goseq to fetch data automatically, except this time
the data being fetched is the relationship between ENSEMBL gene IDs and GO categories.

> GO.wall <- goseq(pwf, "hg19", "ensGene")
> head(GO.wall)

category over_represented_pvalue under_represented_pvalue numDEInCat
2475 GO:0005737 3.471602e-10 1 2043
120 GO:0000278 1.110083e-08 1 228
8929 GO:0035556 4.792590e-08 1 573
2422 GO:0005615 5.156832e-08 1 500
14005 GO:0070062 2.956709e-07 1 388
10437 GO:0044281 2.982165e-07 1 339

numInCat term ontology
2475 9473 cytoplasm CC
120 796 mitotic cell cycle BP
8929 2288 intracellular signal transduction BP
2422 2091 extracellular space CC
14005 1596 extracellular exosome CC
10437 1377 small molecule metabolic process BP

The resulting object is ordered by GO category over representation amongst DE genes.

6.5.3 Using random sampling

It may sometimes be desirable to use random sampling to generate the null distribution for category
membership. For example, to check consistency against results from the Wallenius approximation.
This is easily accomplished by using the method option to specify sampling and the repcnt option
to specify the number of samples to generate:

> GO.samp <- goseq(pwf, "hg19", "ensGene", method = "Sampling", repcnt = 1000)

> head(GO.samp)

category over_represented_pvalue under_represented_pvalue numDEInCat numInCat
31 GO:0000070 0.000999001 1 59 181
120 GO:0000278 0.000999001 1 228 796
121 GO:0000280 0.000999001 1 109 375

9

241 GO:0000727 0.000999001 1 8 12
275 GO:0000819 0.000999001 1 69 219
302 GO:0000940 0.000999001 1 12 20

term ontology
31 mitotic sister chromatid segregation BP
120 mitotic cell cycle BP
121 nuclear division BP
241 double-strand break repair via break-induced replication BP
275 sister chromatid segregation BP
302 outer kinetochore CC

You will notice that this takes far longer than the Wallenius approximation. Plotting the p-
values against one another, we see that there is little difference between the two methods. However,
the accuracy of the sampling method is limited by the number of samples generated, repcnt, such
that very low p-values will not be correctly calculated. Significantly enriched GO terms may then
be missed after correcting for multiple testing.

> plot(log10(GO.wall[, 2]), log10(GO.samp[match(GO.wall[, 1], GO.samp[, 1]), 2]),
+ xlab = "log10(Wallenius p-values)", ylab = "log10(Sampling p-values)",
+ xlim = c(-3, 0)
+)
> abline(0, 1, col = 3, lty = 2)

10

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

log10(Wallenius p−values)

lo
g1

0(
S

am
pl

in
g

p−
va

lu
es

)

6.5.4 Ignoring length bias

goseq also allows for one to perform a GO analysis without correcting for RNA-seq length bias.
In practice, this is only useful for assessing the effect of length bias on your results. You should
NEVER use this option as your final analysis. If length bias is truly not present in your data,
goseq will produce a nearly flat PWF and no length bias correction will be applied to your data
and all methods will produce the same results.

However, if you still wish to ignore length bias in calculating GO category enrichment, this is
again accomplished using the method option.

> GO.nobias <- goseq(pwf, "hg19", "ensGene", method = "Hypergeometric")
> head(GO.nobias)

11

category over_represented_pvalue under_represented_pvalue numDEInCat
2475 GO:0005737 8.895056e-11 1 2043
8929 GO:0035556 2.142921e-10 1 573
120 GO:0000278 2.173133e-09 1 228
14959 GO:0071944 3.208516e-09 1 867
6539 GO:0023051 6.270881e-09 1 623
2568 GO:0005886 7.041510e-09 1 806

numInCat term ontology
2475 9473 cytoplasm CC
8929 2288 intracellular signal transduction BP
120 796 mitotic cell cycle BP
14959 3695 cell periphery CC
6539 2564 regulation of signaling BP
2568 3420 plasma membrane CC

Ignoring length bias gives very different results from a length bias corrected analysis.

> plot(log10(GO.wall[, 2]), log10(GO.nobias[match(GO.wall[, 1], GO.nobias[, 1]), 2]),
+ xlab = "log10(Wallenius p-values)", ylab = "log10(Hypergeometric p-values)",
+ xlim = c(-3, 0), ylim = c(-3, 0)
+)
> abline(0, 1, col = 3, lty = 2)

12

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

log10(Wallenius p−values)

lo
g1

0(
H

yp
er

ge
om

et
ric

 p
−

va
lu

es
)

6.5.5 Limiting GO categories and other category based tests

By default, goseq tests all three major Gene Ontology branches; Cellular Components, Biological
Processes and Molecular Functions. However, it is possible to limit testing to any combination
of the major branches by using the test.cats argument to the goseq function. This is done
by specifying a vector consisting of some combination of the strings “GO:CC", “GO:BP" and
“GO:MF". For example, to test for only Molecular Function GO categories:

> GO.MF <- goseq(pwf, "hg19", "ensGene", test.cats = c("GO:MF"))
> head(GO.MF)

category over_represented_pvalue under_represented_pvalue numDEInCat
1165 GO:0008092 1.430312e-05 0.9999904 225
1003 GO:0005198 1.608456e-05 0.9999903 135

13

1124 GO:0005515 2.405674e-05 0.9999816 2303
225 GO:0003735 6.731411e-05 0.9999703 40
1151 GO:0008017 8.066795e-05 0.9999554 79
2251 GO:0030215 1.578777e-04 0.9999790 11

numInCat term ontology
1165 825 cytoskeletal protein binding MF
1003 521 structural molecule activity MF
1124 11000 protein binding MF
225 153 structural constituent of ribosome MF
1151 247 microtubule binding MF
2251 17 semaphorin receptor binding MF

Native support for other category tests, such as KEGG pathway analysis are also made available
via this argument. See the man goseq function man page for up to date information on what
category tests are natively supported.

6.5.6 Making sense of the results

Having performed the GO analysis, you may now wish to interpret the results. If you wish to
identify categories significantly enriched/unenriched below some p-value cutoff, it is necessary to
first apply some kind of multiple hypothesis testing correction. For example, GO categories over
enriched using a .05 FDR cutoff [Benjamini and Hochberg, 1995] are:

> enriched.GO <- GO.wall$category[p.adjust(GO.wall$over_represented_pvalue,
+ method = "BH"
+) < .05]
> head(enriched.GO)

[1] "GO:0005737" "GO:0000278" "GO:0035556" "GO:0005615" "GO:0070062" "GO:0044281"

Unless you are a machine, GO accession identifiers are probably not very meaningful to you.
Information about each term can be obtained from the Gene Ontology website, http://www.
geneontology.org/, or using the R package GO.db.

> library(GO.db)
> for (go in enriched.GO[1:10]) {
+ print(GOTERM[[go]])
+ cat("--------------------------------------\n")
+ }

GOID: GO:0005737
Term: cytoplasm
Ontology: CC

14

Definition: The contents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.

GOID: GO:0000278
Term: mitotic cell cycle
Ontology: BP
Definition: Progression through the phases of the mitotic cell cycle, the

most common eukaryotic cell cycle, which canonically comprises four
successive phases called G1, S, G2, and M and includes replication of
the genome and the subsequent segregation of chromosomes into daughter
cells. In some variant cell cycles nuclear replication or nuclear
division may not be followed by cell division, or G1 and G2 phases may
be absent.

Synonym: GO:0007067
Synonym: mitosis
Secondary: GO:0007067

GOID: GO:0035556
Term: intracellular signal transduction
Ontology: BP
Definition: The process in which a signal is passed on to downstream

components within the cell, which become activated themselves to
further propagate the signal and finally trigger a change in the
function or state of the cell.

Synonym: GO:0007242
Synonym: GO:0007243
Synonym: GO:0023013
Synonym: GO:0023034
Synonym: intracellular signaling cascade
Synonym: intracellular signaling pathway
Synonym: intracellular signal transduction pathway
Synonym: signal transmission via intracellular cascade
Secondary: GO:0007242
Secondary: GO:0007243
Secondary: GO:0023013
Secondary: GO:0023034

GOID: GO:0005615
Term: extracellular space
Ontology: CC
Definition: That part of a multicellular organism outside the cells

proper, usually taken to be outside the plasma membranes, and occupied

15

by fluid.
Synonym: intercellular space

GOID: GO:0070062
Term: extracellular exosome
Ontology: CC
Definition: A vesicle that is released into the extracellular region by

fusion of the limiting endosomal membrane of a multivesicular body
with the plasma membrane. Extracellular exosomes, also simply called
exosomes, have a diameter of about 40-100 nm.

Synonym: exosome
Synonym: extracellular vesicular exosome

GOID: GO:0044281
Term: small molecule metabolic process
Ontology: BP
Definition: The chemical reactions and pathways involving small molecules,

any low molecular weight, monomeric, non-encoded molecule.
Synonym: small molecule metabolism

GOID: GO:0043230
Term: extracellular organelle
Ontology: CC
Definition: Organized structure of distinctive morphology and function,

occurring outside the cell. Includes, for example, extracellular
membrane vesicles (EMVs) and the cellulosomes of anaerobic bacteria
and fungi.

GOID: GO:0065010
Term: extracellular membrane-bounded organelle
Ontology: CC
Definition: Organized structure of distinctive morphology and function,

bounded by a lipid bilayer membrane and occurring outside the cell.
Synonym: extracellular membrane-enclosed organelle

GOID: GO:1903561
Term: extracellular vesicle
Ontology: CC
Definition: NA
Synonym: microparticle

GOID: GO:0005576

16

Term: extracellular region
Ontology: CC
Definition: The space external to the outermost structure of a cell. For

cells without external protective or external encapsulating structures
this refers to space outside of the plasma membrane. This term covers
the host cell environment outside an intracellular parasite.

Synonym: extracellular

6.5.7 Understanding goseq internals

The situation may arise where it is necessary for the user to perform some of the data processing
steps usually performed automatically by goseq themselves. With this in mind, it will be useful
to step through the preprocessing steps performed automatically by goseq to understand what is
happening.

To start with, when nullp is called, goseq uses the genome and gene identifiers supplied to try
and retrieve length information for all genes given to the genes argument. To do this, it retrieves
the data from the database of gene lengths maintained in the package geneLenDataBase. This is
performed by the getlength function in the following way:

> len <- getlength(names(genes), "hg19", "ensGene")
> length(len)

[1] 22743

> length(genes)

[1] 22743

> head(len)

[1] 247 3133 1978 466 1510 954

After some data cleanup, the length data and the DE data is then passed to the makespline
function to produce the PWF. The nullp returns a data frame which has 3 columns, the original
DEgenes vector, the length bias data (in a column called bias.data) and the PWF itself (in a
column named pwf). The names of the genes are also kept in this data frame as the names of
the rows. If length data could not be obtained for a certain gene the corresponding entries in the
"bias.data" and "pwf" columns are set to NA.

Next we call the goseq function to determine over/under representation of GO categories
amongst DE genes. When we do this, goseq looks for the appropriate organism package and tries
to obtain the mapping from genes to GO categories from it. This is done using the getgo function
as follows:

17

> go <- getgo(names(genes), "hg19", "ensGene")
> length(go)

[1] 22743

> length(genes)

[1] 22743

> head(go)

$<NA>
NULL

$ENSG00000182463
[1] "GO:0006139" "GO:0006351" "GO:0006355" "GO:0006357" "GO:0006366" "GO:0008150"
[7] "GO:0008152" "GO:0009058" "GO:0009059" "GO:0009889" "GO:0009987" "GO:0010467"

[13] "GO:0010468" "GO:0010556" "GO:0016070" "GO:0019219" "GO:0019222" "GO:0032774"
[19] "GO:0034654" "GO:0043170" "GO:0044238" "GO:0050789" "GO:0050794" "GO:0051252"
[25] "GO:0060255" "GO:0065007" "GO:0080090" "GO:0090304" "GO:0141187" "GO:2001141"
[31] "GO:0000785" "GO:0005575" "GO:0005622" "GO:0005634" "GO:0005694" "GO:0043226"
[37] "GO:0043227" "GO:0043228" "GO:0043229" "GO:0043231" "GO:0043232" "GO:0110165"
[43] "GO:0000981" "GO:0003674" "GO:0003676" "GO:0003677" "GO:0003700" "GO:0005488"
[49] "GO:0005515" "GO:0036094" "GO:0043167" "GO:0043169" "GO:0046872" "GO:0140110"

$<NA>
NULL

$<NA>
NULL

$<NA>
NULL

$ENSG00000125835
[1] "GO:0000245" "GO:0000375" "GO:0000377" "GO:0000387" "GO:0000398" "GO:0000966"
[7] "GO:0001510" "GO:0006139" "GO:0006396" "GO:0006397" "GO:0006479" "GO:0008150"

[13] "GO:0008152" "GO:0008213" "GO:0008380" "GO:0009058" "GO:0009059" "GO:0009451"
[19] "GO:0009987" "GO:0010467" "GO:0016043" "GO:0016070" "GO:0016071" "GO:0019538"
[25] "GO:0022607" "GO:0022613" "GO:0022618" "GO:0032259" "GO:0032774" "GO:0034654"
[31] "GO:0036211" "GO:0036260" "GO:0036261" "GO:0043170" "GO:0043412" "GO:0043414"
[37] "GO:0043933" "GO:0044085" "GO:0044238" "GO:0065003" "GO:0071826" "GO:0071840"
[43] "GO:0090304" "GO:0141187" "GO:1903241" "GO:0005575" "GO:0005622" "GO:0005634"

18

[49] "GO:0005654" "GO:0005681" "GO:0005682" "GO:0005683" "GO:0005684" "GO:0005685"
[55] "GO:0005686" "GO:0005687" "GO:0005689" "GO:0005697" "GO:0005737" "GO:0005829"
[61] "GO:0030532" "GO:0031974" "GO:0031981" "GO:0032991" "GO:0034708" "GO:0034709"
[67] "GO:0034719" "GO:0043226" "GO:0043227" "GO:0043229" "GO:0043231" "GO:0043233"
[73] "GO:0046540" "GO:0070013" "GO:0071004" "GO:0071005" "GO:0071007" "GO:0071010"
[79] "GO:0071011" "GO:0071013" "GO:0071204" "GO:0097525" "GO:0097526" "GO:0110165"
[85] "GO:0120114" "GO:0140513" "GO:1902494" "GO:1990234" "GO:1990904" "GO:0003674"
[91] "GO:0003676" "GO:0003723" "GO:0005488" "GO:0005515" "GO:0043021" "GO:0044877"
[97] "GO:0070034" "GO:0070990" "GO:0071208" "GO:1990446" "GO:1990447"

Note that some of the gene categories have been returned as "NULL". This means that a
GO category could not be found in the database for one of the genes. In the goseq command,
enrichment will only be calculated using genes with a GO category by default. However, in older
versions of goseq (below 1.15.2), we counted all genes. i.e. genes with no categories still counted
towards the total number of gene outside of any single category. It is possible to switch between
these two behaviors using the use_genes_without_cat flag in goseq.

The first thing the getgo function does is to convert the UCSC genome/ID namings into the
naming convention used by the organism packages. This is done using two hard coded conversion
vectors that are included in the goseq package but usually hidden from the user.

> goseq:::.ID_MAP

knownGene refGene ensGene geneSymbol sgd plasmo tair
"eg" "eg" "ENSEMBL" "SYMBOL" "sgd" "plasmo" "tair"

> goseq:::.ORG_PACKAGES

anoGam Arabidopsis bosTau ce
"org.Ag.eg" "org.At.tair" "org.Bt.eg" "org.Ce.eg"

canFam dm danRer E. coli K12
"org.Cf.eg" "org.Dm.eg" "org.Dr.eg" "org.EcK12.eg"

E. coli Sakai galGal hg mm
"org.EcSakai.eg" "org.Gg.eg" "org.Hs.eg" "org.Mm.eg"

rheMac Malaria panTro rn
"org.Mmu.eg" "org.Pf.plasmo" "org.Pt.eg" "org.Rn.eg"

sacCer susScr xenTro
"org.Sc.sgd" "org.Ss.eg" "org.Xl.eg"

It is just as valid to run the length and GO category fetching as separate steps and then pass
the result to the nullp and goseq functions using the bias.data and gene2cat arguments. Thus
the following two blocks of code are equivalent:

> pwf <- nullp(genes, "hg19", "ensGene")
> go <- goseq(pwf, "hg19", "ensGene")

19

and

> gene_lengths <- getlength(names(genes), "hg19", "ensGene")
> pwf <- nullp(genes, bias.data = gene_lengths)
> go_map <- getgo(names(genes), "hg19", "ensGene")
> go <- goseq(pwf, "hg19", "ensGene", gene2cat = go_map)

6.6 KEGG pathway analysis

In order to illustrate performing a category test not present in the goseq database, we perform a
KEGG pathway analysis. For human, the mapping from KEGG pathways to genes are stored in
the package org.Hs.eg.db, in the object org.Hs.egPATH. In order to test for KEGG pathway over
representation amongst DE genes, we need to extract this information and put it in a format that
goseq understands. Unfortunately, the org.Hs.eg.db package does not contain direct mappings
between ENSEMBL gene ID and KEGG pathway. Therefore, we have to construct this map by
combining the ENSEMBL <-> Entrez and Entrez <-> KEGG mappings. This can be done using
the following code:

> # Get the mapping from ENSEMBL 2 Entrez
> en2eg <- as.list(org.Hs.egENSEMBL2EG)
> # Get the mapping from Entrez 2 KEGG
> eg2kegg <- as.list(org.Hs.egPATH)
> # Define a function which gets all unique KEGG IDs
> # associated with a set of Entrez IDs
> grepKEGG <- function(id, mapkeys) {
+ unique(unlist(mapkeys[id], use.names = FALSE))
+ }
> # Apply this function to every entry in the mapping from
> # ENSEMBL 2 Entrez to combine the two maps
> kegg <- lapply(en2eg, grepKEGG, eg2kegg)
> head(kegg)

Note that this step is quite time consuming. The code written here is not the most efficient
way of producing this result, but the logic is much clearer than faster algorithms. The source code
for getgo contains a more efficient routine.

We produce the PWF as before. Then, to perform a KEGG analysis, we simply make use of
the gene2cat option in goseq:

> pwf <- nullp(genes, "hg19", "ensGene")
> KEGG <- goseq(pwf, gene2cat = kegg)
> head(KEGG)

20

Note that we do not have to tell the goseq function what organism and gene ID we are using
as we are manually supplying the mapping between genes and categories.

KEGG analysis is shown as an illustration of how to supply your own mapping between gene
ID and category, KEGG analysis is actually natively supported by GOseq and we could have
performed it with the following code.

> pwf <- nullp(genes, "hg19", "ensGene")
> KEGG <- goseq(pwf, "hg19", "ensGene", test.cats = "KEGG")
> head(KEGG)

category over_represented_pvalue under_represented_pvalue numDEInCat numInCat
88 03010 6.317053e-06 0.9999980 29 87
77 00900 2.391514e-04 0.9999710 10 15
113 04115 8.164693e-04 0.9996835 26 64
175 04964 2.150726e-03 0.9995925 10 17
27 00330 3.668792e-03 0.9986594 18 44
20 00250 5.200138e-03 0.9984357 13 28

Noting that this time it was necessary to tell the goseq function that we are using HG19 and
ENSEMBL gene ID, as the function needs this information to automatically construct the mapping
from geneid to KEGG pathway.

6.7 Extracting mappings from organism packages

If you know that the information mapping gene ID to your categories of interest is contained in the
organism packages, but goseq fails to fetch it automatically, you may want to extract it yourself
and then pass it to the goseq function using the gene2cat argument. This is done in exactly
the same way as extracting the KEGG to ENSEMBL mappings in the section “KEGG pathway
analysis" above. This example is actually the worst case, where it is necessary to combine two
mappings to get the desired list. If we had instead wanted the association between Entrez gene
IDs and KEGG pathways, the following code would have been sufficient:

> kegg <- as.list(org.Hs.egPATH)
> head(kegg)

$`1`
[1] NA

$`2`
[1] "04610"

$`3`

21

[1] NA

$`9`
[1] "00232" "00983" "01100"

$`10`
[1] "00232" "00983" "01100"

$`11`
[1] NA

A note on fetching GO mappings from the organism. The data structure of GO is a directed
acyclic graph. This means that in addition to each GO category being associated with a set
of genes, it may also have children that are associated to other genes. It is important to use
the org.Hs.egGO2ALLEGS and NOT the org.Hs.egGO object to create the mapping between GO
categories and gene identifiers, as the latter does not include the links to genes arising from "child"
GO categories. Thank you to Christopher Fjell for pointing this out.

6.8 Correcting for other biases

It is possible that in some circumstances you will wish to correct not just for length bias, but for
the total number of counts. This can make sense because power to detect DE depends on the
total number of counts a gene receives, which is the product of gene length and gene expression.
So correcting for read count bias will compensate for all biases, known and unknown, in power
to detect DE. On the other hand, it will also remove bias resulting from differences in expression
level, which may not be desirable.

Correcting for count bias will produce a different PWF. Therefore, we need to tell goseq about
the data on which the fraction DE depends when calculating the PWF using the nullp function.
We then simply pass the result to goseq as usual.

So, in order to tell goseq to correct for read count bias instead of length bias, all you need to
do is supply a numeric vector, containing the number of counts for each gene to nullp.

> countbias <- rowSums(counts)[rowSums(counts) != 0]
> length(countbias)

[1] 22743

> length(genes)

[1] 22743

22

To use the count bias when doing GO analysis, simply pass this vector to nullp using the
bias.data option. Note that we have to supply "hg19" and "ensGene" to goseq as it is not used
by nullp and hence not in the pwf.counts object.

> pwf.counts <- nullp(genes, bias.data = countbias)
> GO.counts <- goseq(pwf.counts, "hg19", "ensGene")
> head(GO.counts)

category over_represented_pvalue under_represented_pvalue numDEInCat
14959 GO:0071944 3.196498e-16 1 867
2568 GO:0005886 1.197049e-14 1 806
6540 GO:0023052 3.635770e-09 1 982
3306 GO:0007154 7.826356e-09 1 981
3659 GO:0008283 1.963497e-08 1 349
11961 GO:0048856 3.516857e-08 1 960

numInCat term ontology
14959 3695 cell periphery CC
2568 3420 plasma membrane CC
6540 4270 signaling BP
3306 4284 cell communication BP
3659 1357 cell population proliferation BP
11961 4172 anatomical structure development BP

Note that if you want to correct for length bias, but your organism/gene identifier is not natively
supported, then you need to follow the same procedure as above, only the numeric vector supplied
will contain each gene’s length instead of its number of reads.

7 Setup
This vignette was built on:

> sessionInfo()

R version 4.5.1 (2025-06-13)
Platform: x86_64-apple-darwin20
Running under: macOS Monterey 12.7.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1

locale:

23

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base

other attached packages:
[1] GO.db_3.21.0 org.Hs.eg.db_3.21.0 AnnotationDbi_1.71.0
[4] IRanges_2.43.0 S4Vectors_0.47.0 Biobase_2.69.0
[7] BiocGenerics_0.55.0 generics_0.1.4 edgeR_4.7.3

[10] limma_3.65.1 goseq_1.61.1 geneLenDataBase_1.45.0
[13] BiasedUrn_2.0.12

loaded via a namespace (and not attached):
[1] KEGGREST_1.49.1 SummarizedExperiment_1.39.1
[3] rjson_0.2.23 httr2_1.2.1
[5] lattice_0.22-7 vctrs_0.6.5
[7] tools_4.5.1 bitops_1.0-9
[9] curl_6.4.0 parallel_4.5.1

[11] tibble_3.3.0 RSQLite_2.4.2
[13] blob_1.2.4 pkgconfig_2.0.3
[15] Matrix_1.7-3 dbplyr_2.5.0
[17] lifecycle_1.0.4 compiler_4.5.1
[19] stringr_1.5.1 Rsamtools_2.25.1
[21] Biostrings_2.77.2 progress_1.2.3
[23] statmod_1.5.0 Seqinfo_0.99.2
[25] codetools_0.2-20 GenomeInfoDb_1.45.9
[27] RCurl_1.98-1.17 yaml_2.3.10
[29] pillar_1.11.0 crayon_1.5.3
[31] BiocParallel_1.43.4 DelayedArray_0.35.2
[33] cachem_1.1.0 abind_1.4-8
[35] nlme_3.1-168 locfit_1.5-9.12
[37] tidyselect_1.2.1 digest_0.6.37
[39] stringi_1.8.7 dplyr_1.1.4
[41] restfulr_0.0.16 splines_4.5.1
[43] biomaRt_2.65.0 fastmap_1.2.0
[45] grid_4.5.1 cli_3.6.5
[47] SparseArray_1.9.1 magrittr_2.0.3
[49] S4Arrays_1.9.1 GenomicFeatures_1.61.5
[51] XML_3.99-0.18 filelock_1.0.3

24

[53] prettyunits_1.2.0 UCSC.utils_1.5.0
[55] rappdirs_0.3.3 bit64_4.6.0-1
[57] XVector_0.49.0 httr_1.4.7
[59] matrixStats_1.5.0 bit_4.6.0
[61] png_0.1-8 hms_1.1.3
[63] memoise_2.0.1 GenomicRanges_1.61.1
[65] BiocIO_1.19.0 BiocFileCache_2.99.5
[67] mgcv_1.9-3 rtracklayer_1.69.1
[69] txdbmaker_1.5.6 rlang_1.1.6
[71] glue_1.8.0 DBI_1.2.3
[73] xml2_1.3.8 jsonlite_2.0.0
[75] R6_2.6.1 MatrixGenerics_1.21.0
[77] GenomicAlignments_1.45.1

8 Acknowledgments
Christopher Fjell for a series of bug fixes and pointing out the difference between the egGO and
egGO2ALLEGS objects in the organism packages.

References
Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful

approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289–300,
1995.

Hairi Li, Michael T Lovci, Young-Soo Kwon, Michael G Rosenfeld, Xiang-Dong Fu, and Gene W
Yeo. Determination of tag density required for digital transcriptome analysis: application to
an androgen-sensitive prostate cancer model. Proc Natl Acad Sci USA, 105(51):20179–84, Dec
2008. doi: 10.1073/pnas.0807121105.

Alicia Oshlack and Matthew J Wakefield. Transcript length bias in RNA-seq data confounds
systems biology. Biol Direct, 4:14, Jan 2009. doi: 10.1186/1745-6150-4-14.

M. D. Robinson and G. K. Smyth. Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics, 23(21):2881–2887, 2007.

M. D. Robinson and G. K. Smyth. Small-sample estimation of negative binomial dispersion, with
applications to sage data. Biostatistics, 9(2):321–332, 2008.

M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26(1):139–40, Jan 2010. doi:
10.1093/bioinformatics/btp616.

25

M. D. Young, M. J. Wakefield, G. K. Smyth, and A. Oshlack. Gene ontology analysis for RNA-seq:
accounting for selection bias. Genome Biology, 11:R14, Feb 2010.

26

