
Textual Description of webbioc

Colin A. Smith

April 15, 2025

Introduction

webbioc is a web interface for some of the Bioconductor microarray analysis packages.
It is designed to be installed at local sites as a shared bioinformatics resource. Unfortu-
nately, webbioc currently provides only A�ymetrix-based analysis. (We would certainly
like to collaborate with someone interested in creating a cDNA module.) The existing
modules provide a work�ow that takes users from CEL �les to di�erential expression
with multiple hypothesis testing control, and �nally to metadata annotation of the gene
lists.

1 User Interface Goals

This package aims to address a number of issues facing prospective users:

� Ease of use. Using the web interface, the user does not need to know how to use
either a command line interface or the R language. Depending on the computer
savvy of the user, R tends to have a somewhat steep learning curve. webbioc has
a very short learning curve and should be usable by any biologist.

� Ease of installation. After an initial installation by a system administrator, there
is no need to install additional software on user computers. Installing and main-
taining an R installation with all the Bioconductor packages can be a daunting
task, often best suited to a system administrator. Using webbioc, only one such
installation needs to be maintained.

� Discoverability. Graphical user interfaces are signi�cantly more discoverable than
command line interfaces. That is, a user browsing around a software package is
much more likely to discover and use new features if they are graphically presented.
Additionally, a uni�ed user interface for the di�erent Bioconductor packages can
help show how they can be used together in a data-processing pipeline. Ideally,
a user should be able to start using the web interface without reading external
documentation.

1

� Documentation. Embedding context-sensitive online help into the interface helps
�rst-time users make good decisions about which statistical approaches to take.
Because of its power, Bioconductor includes a myriad of options for analysis. Help-
ing the novice statistician wade through that pool of choices is an important aspect
of webbioc.

2 Architecture

webbioc is written in a combination of Perl, R, and shell scripts. For most processing,
the Perl-driven web interface dynamically creates an R script, which is processed in batch
mode. A shell script controls the execution of R and catches any errors that result.

The web interface can be con�gured to execute the shell script in one of two ways. In
the single-machine con�guration, Perl forks o� an auxiliary thread which then runs the
script. However, webbioc can also be con�gured to use PBS (Portable Batch System)
to send the job to another computer for processing.

If used in a cluster con�guration, webbioc depends on having a shared partition
between the web server and all the compute nodes. This is typically accomplished with
NFS. The shared partition allows the compute nodes to push results directly out to the
user without directly interacting with the web server.

Microarray analysis is very data intensive and tends to produce large �les. Thus
special care must be taken to e�ciently move that data back and forth between the
web-client and the server. webbioc uses two di�erent systems for exchanging data with
the client, one for input and the other for output.

The Upload Manager handles all �les to be processed by Bioconductor. When users
start a session with the upload manager, they are granted a unique token that identi�es
the session. Using that short random string of letters and numbers, they may access
their uploaded �les from any of the Bioconductor tools. In that way, users must only
upload �les a single time. Upload manager sessions are meant to be temporary, with
any �les being automatically deleted after a given amount of time.

For output of results, webbioc creates static HTML pages on the �y that contain
relevant images or �les. Like the upload manager, job results are uniquely identi�ed and
are only temporarily stored. Because saving old results could potentially �ll up the disk,
those too should be automatically purged on a regular basis.

The results of one job may need to be fed into the input of another. For instance,
expression summary data created by affy needs to be supplied to multtest for detection
of di�erentially expressed genes. To facilitate that data exchange, the web interface will
optionally copy results back to the upload manager for processing by other packages.

The data interchange format used by webbioc is the standard R data �le. By con-
vention, each �le contains only one object. Additionally, instead of using the common
.Rda or .Rdata extensions, webbioc will use the class of the stored object as the �le
extension. This provides a useful abstraction that many computer users have come to

2

understand and expect. The extensions are merely for the bene�t of the user as the web
interface ignores them.

3 System Requirements

� R 1.8.0: webbioc has only been tested with R 1.8.0 and later and there is no
guarantee that it will work with any version earlier than that.

� Biobase, a�y, multtest, anna�y, vsn, gcrma, qvalue: webbioc directly in-
vokes these packages for processing work. Additionally, those packages depend on
others that are not listed here but must also be installed.

� Bioconductor metadata packages: Much of the computation done by affy,
annaffy, and gcrma depends on pre-built metadata packages available on the
Bioconductor web site. We recommend that all of the metadata packages be
installed so that users are given the maximum �exibility with which chips they
may process. As of this writing, a full install of Bioconductor and all data packages
uses approximately 1.25 GB of disk space.

� Unix: webbioc was written in a Unix environment and depends on many Unix
conventions including path names, directory structure, and interprocess communi-
cation. It is doubtful whether it will run under Windows and has not been tested
as such. However, an ambitious person could port webbioc to Windows. The
community would greatly appreciate such an e�ort.

� Perl 5.6: Development and testing has been done with both Perl 5.6 and 5.8.
It will likely work with either. Perl 5.6 may however require installation of some
modules that do not ship as part of the default installation. webbioc currently uses
the following modules: CGI, Digest::MD5, File::stat, IPC::Open3, and POSIX.

� Ghostscript: The web interface uses Ghostscript to produce raw graphics. It
must be installed.

� Netpbm: The Netpbm series of programs handle graphics manipulation. If you
install it using the RPMs, make sure to install both netpbm and netpbmprogs.

� SGE or PBS (Optional): webbioc has been developed and tested with two
batch queueing systems, the Sun Grid Engine and the Portable Batch System.
(Only PBS Pro has been tested, although OpenPBS should also work.) If you will
be using a batch queueing system, webbioc depends on having a shared �lesystem
mounted in the same place on the web server as well as all the compute nodes.
Please note that these are optional as webbioc can also run jobs by forking to the
background. Adding support for another batch queueing system is a fairly trivial
matter. Please contact the author if you are interested in using a di�erent system.

3

4 Installation

Installing the webbioc �les is relatively straightforward. First create a directory within
the web server's CGI directory that will hold all the Perl scripts. One might typically
call that directory "bioconductor". Copy all the �les from /R lib dir/webbioc/cgi/
into that directory.

Next verify that the permissions are correct on the copied �les. Change go to the
directory to which you copied the �les. Use the command chmod 755 *.cgi to make
the CGI scripts executable and the command chmod 644 *.pm to make the support
modules readable.

You must decide how you want to link the Bioconductor web interface into your
existing web site. It was designed to integrate seamlessly into an existing site design.
webbioc includes a very rudimentary home page in /R lib dir/webbioc/www/. You
may either use this as a starting point or create your own. Please note that you may
have to change the links slightly depending on where you place the CGI scripts.

The last step of the installation is to create two directories where the web interface
can store �les. Remember that if using a batch queueing system, these two directories
must be shared between the web server and all compute nodes via NFS (or some other
�le sharing mechanism). If other users have access to any of the machines running the
web interface, we recommend setting the permissions of these directories so that only
the web sever user can read them.

The �rst directory will be for storing uploaded �les. The largest type of �le uploaded
will probably be CEL �les. They are typically around 10 MB each. Therefore, depending
on expected server usage, the directory should be kept on a partition with hundreds of
megabytes to gigabytes of free space. It can be stored anywhere and does not necessarily
have to be web-accessible.

The second directory will be used for storing the results of jobs that clients submit.
Job results will typically be anywhere from 5 MB to 5 KB. The free space necessary for
this directory is again subject to usage. This directory must be accessible via the web
server to allow results to be delivered asynchronously.

Both directories should be regularly purged of old �les. In the future we hope to
provide scripts that will help you do that. Until then, you will have to handle that
yourself. We would appreciate the contribution of any scripts towards that end.

To facilitate installation and updating of metadata packages, webbioc includes a
function to download and install every metadata package from the Bioconductor web site.
The following will install all metadata packages and update any out-of-date metadata
packages. (Change the path name to match your system.)

library(webbioc)

installReps("/library/install/path")

Make sure to run R with a user who has permission to write to your library directory.
Depending on your site, you may wish to set up a cron job to execute this code approx-
imately once per month to check for updates or additions to the medadata packages. If

4

packages are already up-to-date, it will not waste bandwidth nor CPU by re-installing
them.

5 Con�guration

Beyond putting the CGI scripts and HTML page in the right places and setting up direc-
tories to receive �les, all con�guration is done through the Site.pm �le. The con�guration
options are discussed here.

� UPLOAD_DIR This is the directory where uploaded �les are stored. You should
set this to the absolute path name of the upload directory created earlier.

� RESULT_DIR This is the directory where the web interface will place all result
�les. You should set this to the absolute path name of the results directory created
earlier.

� RESULT_URL This is the absolute URL from which the above directory can
be accessed through your web server. In almost all cases this is di�erent than the
�lesystem path.

� BIOC_URL This is the absolute URL to the CGI scripts installed earlier.

� SITE_URL This is the site URL including only the domain name. It combined
with the above URL to create links within the system.

� R_BINARY The path to the R executable you wish to use with the web interface.
If using PBS, R must be placed in the same location on both the web server and
computed nodes.

� R_LIBS If you store R libraries outside the default location, enter the paths to
those directories here as a colon-delimited list. Otherwise leave this as an empty
string.

� DEBUG Turn on or o� debug mode. If debug mode is on, the web interface will
leave scripts, output, and other �les behind for inspection. Otherwise, those �les
will be deleted before a job completes.

� SH_HEADER This option is for appending lines to the top of all shell scripts.
It can be very useful for setting environment variables such as PATH. (PATH
must include the directories containing standard shell tools, Ghostscript, Netpbm
binaries, and sendmail.) Depending on your installation you may have to set the
GS_LIB variable so Ghostscript can �nd its libraries and fonts.

� BATCH_SYSTEM This option selects the type of batch queueing system to
use. Currently supported options are fork, sge, and pbs.

5

� BATCH_ENV This hash allows you to set environment variables necessary
for running the batch queueing system. SGE typically needs SGE_ROOT and
possibly SGE_CELL or COMMD_PORT. PBS typically needs PBS_HOME,
PBS_EXEC, and PBS_SERVER.

� BATCH_BIN This speci�es the location of the batch queueing system bin di-
rectory.

� BATCH_ARG This speci�es any additional arguments to be passed to the job
submission program that are necessary for job routing, accounting, etc. It can be
left blank.

� site_header This subroutine is called to produce the site header HTML for all
CGI pages. It is implemented as a function to allow you to include other �les
and/or do any other crazy programming you wish. If you make changes, make
sure to set the title of the page to the $title Perl variable.

� site_footer This subroutine is called to produce the site footer HTML for all CGI
pages. It is your responsibility to close o� any HTML tags here that you open in
site_footer.

6

	User Interface Goals
	Architecture
	System Requirements
	Installation
	Configuration

