Package ‘Biostrings’

March 11, 2024

Title Efficient manipulation of biological strings

Description Memory efficient string containers, string matching
algorithms, and other utilities, for fast manipulation of large
biological sequences or sets of sequences.

biocViews SequenceMatching, Alignment, Sequencing, Genetics,
Datalmport, DataRepresentation, Infrastructure

URL https://bioconductor.org/packages/Biostrings

BugReports https://github.com/Bioconductor/Biostrings/issues
Version 2.71.3

License Artistic-2.0

Encoding UTF-8

Depends R (>=4.0.0), methods, BiocGenerics (>= 0.37.0), S4Vectors (>=
0.27.12), IRanges (>=2.31.2), XVector (>= 0.37.1),
GenomelnfoDb

Imports methods, utils, grDevices, graphics, stats, crayon
LinkingTo S4Vectors, [Ranges, X Vector
Enhances Rmpi

Suggests BSgenome (>= 1.13.14), BSgenome.Celegans.UCSC.ce2 (>=
1.3.11), BSgenome.Dmelanogaster. UCSC.dm3 (>= 1.3.11),
BSgenome.Hsapiens.UCSC.hg18, drosophila2probe, hgu95av2probe,
hgul33aprobe, GenomicFeatures (>= 1.3.14), hgu95av2cdf, affy
(>=1.41.3), affydata (>= 1.11.5), RUnit, BiocStyle, knitr

VignetteBuilder knitr

LazyLoad yes

Collate 00Odatacache.R utils.R [IUPAC_CODE_MAP.R AMINO_ACID_CODE.R
GENETIC_CODE.R XStringCodec-class.R seqtype.R coloring.R
XString-class.R XStringSet-class.R XStringSet-comparison.R
XStringViews-class.R MaskedXString-class.R
XStringSetList-class.R seqinfo-methods.R xscat.R
XStringSet-io.R letter.R getSeq.R letterFrequency.R
dinucleotideFrequencyTest.R chartr.R reverseComplement.R

1

https://bioconductor.org/packages/Biostrings
https://github.com/Bioconductor/Biostrings/issues

2 Contents

translate.R toComplex.R replaceAt.R replacelLetterAt.R
injectHardMask.R padAndClip.R strsplit-methods.R misc.R
SparseList-class.R MIndex-class.R lowlevel-matching.R
match-utils.R matchPattern.R maskMotif.R matchLRPatterns.R
trimLRPatterns.R matchProbePair.R matchPWM.R findPalindromes.R
PDict-class.R matchPDict.R XStringPartialMatches-class.R
XStringQuality-class.R QualityScaledXStringSet.R InDel-class.R
AlignedXStringSet-class.R PairwiseAlignments-class.R

Pairwise AlignmentsSingleSubject-class.R PairwiseAlignments-io.R
align-utils.R pmatchPattern.R pairwiseAlignment.R stringDist.R
needwunsQS.R MultipleAlignment.R matchprobes.R zzz.R

git_url https://git.bioconductor.org/packages/Biostrings
git_branch devel

git_last_commit 348c506

git_last_commit_date 2024-03-09

Repository Bioconductor 3.19

Date/Publication 2024-03-11

Author Hervé Pages [aut, cre],

Patrick Aboyoun [aut],

Robert Gentleman [aut],

Saikat DebRoy [aut],

Vince Carey [ctb],

Nicolas Delhomme [ctb],

Felix Ernst [ctb],

Haleema Khan [ctb] (Converted 'matchprobes’ vignette from Sweave to
RMarkdown),

Aidan Lakshman [ctb],

Kieran O'Neill [ctb],

Valerie Obenchain [ctb],

Marcel Ramos [ctb],

Albert Vill [ctb],

Jen Wokaty [ctb] (Converted 'matchprobes' vignette from Sweave to
RMarkdown),

Erik Wright [ctb]

Maintainer Hervé Pages <hpages.on.github@gmail.com>

Contents
AAString-class 4
align-utils 5
AlignedXStringSet-class L 7
AMINO_ACID_CODE e e e 9
Biostringsinternals Lo 10
chartr e 10

Contents

3
dinucleotideFrequencyTest 13
DNAString-class 14
findPalindromes 16
GENETIC_CODE e e 18
GELSEQ . . . o e e e e 21
GIEZEXPIZ .« . v i i e e e e e e e e e e e e e e e 22
HNF4alpha o e 23
InDel-class e 24
injectHardMask L 24
IUPAC_CODE_MAP s e e e 26
letter o e 27
letterFrequency e 28
longestConsecutive e e 34
lowlevel-matching 35
MaskedXString-class e 40
maskMotif e 42
match-utils 44
matchLRPatterns 46
matchPatterno 48
matchPDict 52
matchPDict-inexact 61
matchProbePair 65
matchprobes 66
matchPWM 68
MiIndex-class e 70
IMISC . . v v o e e e e e e e e e 72
MultipleAlignment-class 73
needwunsQS L e e e 77
nucleotideFrequency 79
padAndClip e 83
pairwiseAlignment L. e 86
PairwiseAlignments-class 89
PairwiseAlignments-i0l 93
PDict-class e 95
phiX174Phage 99
Pid . . e 100
pmatchPattern 101
QualityScaledXStringSet-class 102
replaceAt L e e e e 105
replaceletterAt e 109
reverseComplement 111
RNAString-class e e e e e 113
seqinfo-methods L 115
stringDisto 116
SUDbSHItUHON.MALIICES« o v v i e e e e e 118
toCompleX e e e e e e 121
translate L. e 122

trimLRPatterns e 125

AAString-class

XSCAL . o v v L e 128
XString-class e e e 129
XStringPartialMatches-class oL o 131
XStringQuality-class 132
XStringSet-class 134
XStringSet-comparisono e e e e 140
XSingSet-10 e e e e e 143
XStringSetList-class L 150
XStringViews-class 152
yeastSEQCHRI1 oo 154

Index 156

AAString-class AAString objects
Description

An AAString object allows efficient storage and manipulation of a long amino acid sequence.

Usage

AAString(x="", start=1, nchar=NA)

Predefined constants:

AA_ALPHABET # full Amino Acid alphabet
AA_STANDARD # first 20 letters only
AA_PROTEINOGENIC # first 22 letters only

Arguments

X A single string.

start, nchar Where to start reading from in x and how many letters to read.
Details

The AAString class is a direct XString subclass (with no additional slot). Therefore all functions
and methods described in the XString man page also work with an AAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte char-
acter set) the AAString container can only store a string based on the Amino Acid alphabet (see
below).

The Amino Acid alphabet

This alphabet contains all letters from the Single-Letter Amino Acid Code (see AMINO_ACID_CODE)
plus "*" (the stop letter), "-" (the gap letter), "+" (the hard masking letter), and " . " (the not a letter
or not available letter). It is stored in the AA_ALPHABET predefined constant (character vector).

The alphabet () function returns AA_ALPHABET when applied to an AAString object.

align-utils 5

Constructor-like functions and generics

In the code snippet below, x can be a single string (character vector of length 1) or a BString object.

AAString(x="", start=1, nchar=NA): Tries to convert x into an AAString object by reading
nchar letters starting at position start in x.

Accessor methods

In the code snippet below, x is an AAString object.

alphabet(x): If x is an AAString object, then return the Amino Acid alphabet (see above). See
the corresponding man pages when x is a BString, DNAString or RNAString object.

Display

The letters in an AAString object are colored when displayed by the show() method. Set global
option Biostrings. coloring to FALSE to turn off this coloring.

Author(s)

H. Pages

See Also

AMINO_ACID_CODE, letter, XString-class, alphabetFrequency

Examples

AA_ALPHABET

a <- AAString("MARKSLEMSIR*")
length(a)

alphabet(a)

align-utils Utility functions related to sequence alignment

Description

A variety of different functions used to deal with sequence alignments.

Usage

align-utils

nedit(x) # also nmatch and nmismatch

mismatchTable(x, shiftLeft=0L, shiftRight=0L, ...)
mismatchSummary(x, ...)

S4 method for signature 'AlignedXStringSeto'
coverage(x, shift=0L, width=NULL, weight=1L)

S4 method for signature 'PairwiseAlignmentsSingleSubject'
coverage(x, shift=0L, width=NULL, weight=1L)

compareStrings(pattern, subject)

S4 method for signature 'PairwiseAlignmentsSingleSubject'
consensusMatrix(x,

Arguments

X

as.prob=FALSE, shift=0L, width=NULL,
baseOnly=FALSE, gapCode="-", endgapCode="-")

A character vector or matrix, XStringSet, XStringViews, PairwiseAlignments,
or list of FASTA records containing the equal-length strings.

shiftlLeft, shiftRight

shift, width

weight

pattern, subject

as.prob

baseOnly

Non-positive and non-negative integers respectively that specify how many pre-
ceding and succeeding characters to and from the mismatch position to include
in the mismatch substrings.

Further arguments to be passed to or from other methods.
See ?coverage.

An integer vector specifying how much each element in x counts.

The strings to compare. Can be of type character, XString, XStringSet,
AlignedXStringSet, or, in the case of pattern, PairwiseAlignments.

If the first argument of compareStrings() (pattern)isaPairwiseAlignments
object, then the second argument (subject) must be missing. In this case
compareStrings(x) is equivalent to compareStrings(pattern(x), subject(x)).

If TRUE then probabilities are reported, otherwise counts (the default).

TRUE or FALSE. If TRUE, the returned vector only contains frequencies for the
letters in the "base" alphabet i.e. "A", "C", "G", "T" if x is a "DNA input", and
"A", "C", "G", "U" if x is "RNA input". When x is a BString object (or an
XStringViews object with a BString subject, or a BStringSet object), then the
baseOnly argument is ignored.

gapCode, endgapCode

The codes in the appropriate alphabet to use for the internal and end gaps.

AlignedXStringSet-class 7

Details

mismatchTable: a data.frame containing the positions and substrings of the mismatches for the
AlignedXStringSet or PairwiseAlignments object.

mismatchSummary: alist of data.frame objects containing counts and frequencies of the mismatches
for the AlignedXStringSet or PairwiseAlignmentsSingleSubject object.

compareStrings combines two equal-length strings that are assumed to be aligned into a single
character string containing that replaces mismatches with "?", insertions with "+", and deletions
with "-".

See Also

pairwiseAlignment, consensusMatrix, XString-class, XStringSet-class, XStringViews-class, AlignedXStringSet-
class, Pairwise Alignments-class, match-utils

Examples

Compare two globally aligned strings

stringl <- "ACTTCACCAGCTCCCTGGCGGTAAGTTGATC---AAAGG---AAACGCAAAGTTTTCAAG"
string2 <- "GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC"
compareStrings(stringl, string2)

Create a consensus matrix
nwl <-
pairwiseAlignment (AAStringSet(c("HLDNLKGTF", "HVDDMPNAL")), AAString("SMDDTEKMSMKL"),
substitutionMatrix = "BLOSUM50@", gapOpening = 3, gapExtension = 1)
consensusMatrix(nwl)

Examine the consensus between the bacteriophage phi X174 genomes
data(phiX174Phage)

phageConsmat <- consensusMatrix(phiX174Phage, baseOnly = TRUE)
phageDiffs <- which(apply(phageConsmat, 2, max) < length(phiX174Phage))
phageDiffs

phageConsmat[,phageDiffs]

AlignedXStringSet-class
AlignedXStringSet and QualityAlignedXStringSet objects

Description

The AlignedXStringSet and QualityAlignedXStringSet classes are containers for storing an
aligned XStringSet.

8 AlignedXStringSet-class

Details

Before we define the notion of alignment, we introduce the notion of "filled-with-gaps subse-
quence". A "filled-with-gaps subsequence" of a string stringl is obtained by inserting O or any
number of gaps in a subsequence of sl. For example L-A-ND and A-N-D are "filled-with-gaps
subsequences" of LAND. An alignment between two strings stringl and string2 results in two
strings (alignl and align2) that have the same length and are "filled-with-gaps subsequences" of
string1 and string?2.

For example, this is an alignment between LAND and LEAVES:

L-A
LEA

An alignment can be seen as a compact representation of one set of basic operations that transforms
stringl into alignl. There are 3 different kinds of basic operations: "insertions" (gaps in alignl),
"deletions" (gaps in align2), "replacements”. The above alignment represents the following basic
operations:

insert E at pos 2

insert V at pos 4

insert E at pos 5

replace by S at pos 6 (N is replaced by S)
delete at pos 7 (D is deleted)

Note that "insert X at pos i" means that all letters at a position >= i are moved 1 place to the right
before X is actually inserted.

There are many possible alignments between two given strings stringl and string2 and a common
problem is to find the one (or those ones) with the highest score, i.e. with the lower total cost in
terms of basic operations.

Accessor methods

In the code snippets below, x is a AlignedXStringSet or QualityAlignedXStringSet object.

unaligned(x): The original string.

aligned(x, degap = FALSE): If degap = FALSE, the "filled-with-gaps subsequence" representing
the aligned substring. If degap = TRUE, the "gap-less subsequence" representing the aligned
substring.

ranges(x): The bounds of the aligned substring.

start(x): The start of the aligned substring.

end(x): The end of the aligned substring.

width(x): The width of the aligned substring, ignoring gaps.

indel(x): The positions, in the form of an IRanges object, of the insertions or deletions (depend-
ing on what x represents).

AMINO_ACID_CODE 9

nindel(x): A two-column matrix containing the length and sum of the widths for each of the
elements returned by indel.

length(x): The length of the aligned(x).

nchar(x): The nchar of the aligned(x).

alphabet (x): Equivalent to alphabet(unaligned(x)).
as.character(x): Converts aligned(x) to a character vector.

toString(x): Equivalent to toString(as.character(x)).

Subsetting methods

x[i]: Returns a new AlignedXStringSet or QualityAlignedXStringSet object made of the
selected elements.

rep(x, times): Returns anew AlignedXStringSet orQualityAlignedXStringSet object made
of the repeated elements.

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, PairwiseAlignments-class, XStringSet-class

Examples

pattern <- AAString("LAND")

subject <- AAString("LEAVES")

pal <- pairwiseAlignment(pattern, subject, substitutionMatrix="BLOSUM50",
gapOpening=3, gapExtension=1)

alignedPattern <- pattern(pal)
class(alignedPattern) # AlignedXStringSet object

unaligned(alignedPattern)
aligned(alignedPattern)
as.character(alignedPattern)
nchar(alignedPattern)

AMINO_ACID_CODE The Single-Letter Amino Acid Code

Description

Named character vector mapping single-letter amino acid representations to 3-letter amino acid
representations.

10 chartr

See Also
AAString, GENETIC_CODE

Examples

See all the 3-letter codes
AMINO_ACID_CODE

Convert an AAString object to a vector of 3-letter amino acid codes
aa <- AAString("LANDEECQW")
AMINO_ACID_CODE[strsplit(as.character(aa), NULL)[[111]

Biostrings internals Biostrings internals

Description

Biostrings objects, classes and methods that are not intended to be used directly.

Author(s)

H. Pages

chartr Replace letters in a sequence or set of sequences

Description

Replace letters in a sequence or set of sequences.

Usage

S4 method for signature 'ANY,ANY,XString'
chartr(old, new, x)

replaceAmbiguities(x, new="N")

Arguments
old A character string specifying the characters to be replaced.
new A character string specifying the replacements. It must be a single letter for
replaceAmbiguities.
X The sequence or set of sequences to translate. If x is an XString, XStringSet,

XStringViews or MaskedXString object, then the appropriate chartr method is
called, otherwise the standard chartr R function is called.

chartr 11

Details

See ?chartr for the details.

Note that, unlike the standard chartr R function, the methods for XString, XStringSet, XStringViews
and MaskedXString objects do NOT support character ranges in the specifications.

replaceAmbiguities() is a simple wrapper around chartr() that replaces all [IUPAC ambiguities
with N.

Value

An object of the same class and length as the original object.

See Also

e chartr in the base package.

» The replaceAt function for extracting or replacing arbitrary subsequences from/in a sequence
or set of sequences.

* The replacelLetterAt function for a DNA-specific single-letter replacement functions useful
for SNP injections.

* TUPAC_CODE_MAP for the mapping between IUPAC nucleotide ambiguity codes and their mean-
ing.

* alphabetFrequency (and uniquelLetters) for tabulating letters in (and extracting the unique
letters from) a sequence or set of sequences.

* The XString, XStringSet, XStringViews, and MaskedXString classes.

Examples

R O L D i -
A BASIC chartr() EXAMPLE
B = e

x <- BString(”"MiXeD cAsE 123")
chartr(”iXs", "why", x)

Bt e
TRANSFORMING DNA WITH BISULFITE (AND SEARCHING IT...)
B =

library(BSgenome.Celegans.UCSC.ce2)
chrll <- Celegans[["chrII"]]
alphabetFrequency(chrll)

pattern <- DNAString("TGGGTGTATTTA")

Transforming and searching the + strand
plus_strand <- chartr("C", "T", chrII)
alphabetFrequency(plus_strand)
matchPattern(pattern, plus_strand)
matchPattern(pattern, chrlII)

12 detail

Transforming and searching the - strand
minus_strand <- chartr("G", "A", chrll)
alphabetFrequency(minus_strand)
matchPattern(reverseComplement(pattern), minus_strand)
matchPattern(reverseComplement(pattern), chriI)

B m o
replaceAmbiguities()
B m o

dna <- DNAStringSet(c("TTTKYTT-GR”, "", "NAASACVT"))
dna
replaceAmbiguities(dna)

detail Show (display) detailed object content

Description

This is a variant of show, offering a more detailed display of object content.

Usage
detail(x, ...)

Arguments
X An object. The default simply invokes show.
Additional arguments. The default definition makes no use of these arguments.
Value

None; the function is invoked for its side effect (detailed display of object content).

Author(s)

Martin Morgan

Examples

origMAlign <-
readDNAMultipleAlignment(filepath =
system.file("extdata”,
"msx2_mRNA.aln",
package="Biostrings"),
format="clustal")
detail(origMAlign)

dinucleotideFrequencyTest 13

dinucleotideFrequencyTest
Pearson’s chi-squared Test and G-tests for String Position Dependence

Description
Performs Person’s chi-squared test, G-test, or William’s corrected G-test to determine dependence
between two nucleotide positions.

Usage

dinucleotideFrequencyTest(x, i, j, test = c("chisq”, "G", "adjG"),
simulate.p.value = FALSE, B = 2000)

Arguments
X A DNAStringSet or RNAStringSet object.
i,] Single integer values for positions to test for dependence.
test One of "chisq” (Person’s chi-squared test), "G" (G-test), or "adjG" (William’s

corrected G-test). See Details section.
simulate.p.value
a logical indicating whether to compute p-values by Monte Carlo simulation.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details
The null and alternative hypotheses for this function are:

HO: positions i and j are independent

H1: otherwise

Let O and E be the observed and expected probabilities for base pair combinations at positions i
and j respectively. Then the test statistics are calculated as:

test="chisq": stat=sum(abs(O - E)*2/E)
test="G": stat=2* sum(O * log(O/E))

test="adjG": stat =2 * sum(O * log(O/E))/q, where q = 1 + ((df - 1)*2 - 1)/(6*length(x)*(df -
2))

Under the null hypothesis, these test statistics are approximately distributed chi-squared(df = ((dis-
tinct bases at 1) - 1) * ((distinct bases at j) - 1)).

Value

An htest object. See help(chisq.test) for more details.

14 DNAString-class

Author(s)

P. Aboyoun

References
Ellrott, K., Yang, C., Sladek, EM., Jiang, T. (2002) "Identifying transcription factor binding sites
through Markov chain optimations", Bioinformatics, 18 (Suppl. 2), S100-S109.

Sokal, R.R., Rohlf, FJ. (2003) "Biometry: The Principle and Practice of Statistics in Biological
Research", W.H. Freeman and Company, New York.

Tomovic, A., Oakeley, E. (2007) "Position dependencies in transcription factor binding sites",
Bioinformatics, 23, 933-941.

Williams, D.A. (1976) "Improved Likelihood ratio tests for complete contingency tables", Biometrika,
63, 33-37.

See Also

nucleotideFrequencyAt, XStringSet-class, chisq.test

Examples

data(HNF4alpha)

dinucleotideFrequencyTest(HNF4alpha, 1, 2)
dinucleotideFrequencyTest(HNF4alpha, 1, 2, test = "G")
dinucleotideFrequencyTest(HNF4alpha, 1, 2, test "adjG")

DNAString-class DNAString objects

Description

A DNAString object allows efficient storage and manipulation of a long DNA sequence.

Details

The DNAString class is a direct XString subclass (with no additional slot). Therefore all functions
and methods described in the XString man page also work with a DNAString object (inheritance).

Unlike the BString container that allows storage of any single string (based on a single-byte char-
acter set) the DNAString container can only store a string based on the DNA alphabet (see below).
In addition, the letters stored in a DNAString object are encoded in a way that optimizes fast search
algorithms.

The DNA alphabet

This alphabet contains all letters from the [UPAC Extended Genetic Alphabet (see ?ITUPAC_CODE_MAP)
plus "-" (the gap letter), "+" (the hard masking letter), and "." (the not a letter or not available
letter). It is stored in the DNA_ALPHABET predefined constant (character vector).

The alphabet () function returns DNA_ALPHABET when applied to a DNAString object.

DNAString-class 15

Constructor-like functions and generics
In the code snippet below, x can be a single string (character vector of length 1), a BString object

or an RNAString object.

DNAString(x="", start=1, nchar=NA): Tries to convert x into a DNAString object by reading
nchar letters starting at position start in x.

Accessor methods

In the code snippet below, x is a DNAString object.

alphabet(x, baseOnly=FALSE): If x is a DNAString object, then return the DNA alphabet (see
above). See the corresponding man pages when x is a BString, RNAString or AAString object.

Display

The letters in a DNAString object are colored when displayed by the show() method. Set global
option Biostrings.coloring to FALSE to turn off this coloring.

Author(s)

H. Pages

See Also

» The DNAStringSet class to represent a collection of DNAString objects.
* The XString and RNAString classes.

* reverseComplement

* alphabetFrequency

* TUPAC_CODE_MAP

* letter

Examples

DNA_BASES

DNA_ALPHABET

dna <- DNAString("TTGAAAA-CTC-N")

dna # 'options(Biostrings.coloring=FALSE)' to turn off coloring

length(dna)
alphabet (dna) # DNA_ALPHABET
alphabet(dna, baseOnly=TRUE) # DNA_BASES

16 findPalindromes

findPalindromes Searching a sequence for palindromes

Description

The findPalindromes function can be used to find palindromic regions in a sequence.

palindromeArmLength, palindromeLeftArm, and palindromeRightArm are utility functions for
operating on palindromic sequences. They should typically be used on the output of findPalindromes.

Usage

findPalindromes(subject, min.armlength=4,
max.looplength=1, min.looplength=0, max.mismatch=0,
allow.wobble=FALSE)

palindromeArmLength(x, max.mismatch=0, allow.wobble=FALSE)
palindromeLeftArm(x, max.mismatch=0, allow.wobble=FALSE)
palindromeRightArm(x, max.mismatch=0, allow.wobble=FALSE)

Arguments

subject An XString object containing the subject string, or an XStringViews object.

min.armlength An integer giving the minimum length of the arms of the palindromes to search
for.

max.looplength An integer giving the maximum length of "the loop" (i.e the sequence sep-
arating the 2 arms) of the palindromes to search for. Note that by default
(max.looplength=1), findPalindromes will search for strict palindromes only.

min.looplength An integer giving the minimum length of "the loop" of the palindromes to search
for.

max.mismatch The maximum number of mismatching letters allowed between the 2 arms of
the palindromes to search for.

allow.wobble Logical indicating whether wobble base pairs (G/U or G/T base pairings) should
be treated as mismatches (the default) or matches.

X An XString object containing a 2-arm palindrome, or an XStringViews object
containing a set of 2-arm palindromes.

Details

The findPalindromes function finds palindromic substrings in a subject string. The palindromes
that can be searched for are either strict palindromes or 2-arm palindromes (the former being a
particular case of the latter) i.e. palindromes where the 2 arms are separated by an arbitrary sequence
called "the loop".

If the subject string is a nucleotide sequence (i.e. DNA or RNA), the 2 arms must contain sequences
that are reverse complement from each other. Otherwise, they must contain sequences that are the
same.

findPalindromes 17

Value

findPalindromes returns an XStringViews object containing all palindromes found in subject
(one view per palindromic substring found).

palindromeArmLength returns the arm length (integer) of the 2-arm palindrome x. It will raise
an error if x has no arms. Note that any sequence could be considered a 2-arm palindrome if
we were OK with arms of length 0 but we are not: x must have arms of length greater or equal
to 1 in order to be considered a 2-arm palindrome. When applied to an XStringViews object x,
palindromeArmLength behaves in a vectorized fashion by returning an integer vector of the same
length as x.

palindromeLeftArm returns an object of the same class as the original object x and containing the
left arm of x.

palindromeRightArm does the same as palindromeLeftArm but on the right arm of x.

Like palindromeArmLength, both palindromeLeftArm and palindromeRightArm will raise an
error if x has no arms. Also, when applied to an XStringViews object x, both behave in a vectorized
fashion by returning an XStringViews object of the same length as x.

Author(s)

H. Pages, with contributions from Erik Wright and Thomas McCarthy

See Also

maskMotif, matchPattern, matchLRPatterns, matchProbePair, XStringViews-class, DNAString-
class

Examples

x@ <- BString("abbbaabbcbbaccacabbbccbcaabbabacca”)

pals@a <- findPalindromes(x@, min.armlength=3, max.looplength=5)
pals@a

palindromeArmLength(pals@a)

palindromeLeftArm(pals@a)

palindromeRightArm(pals@a)

pals@b <- findPalindromes(x@, min.armlength=9, max.looplength=5,
max.mismatch=3)

pals@b

palindromeArmLength(pals@b, max.mismatch=3)

palindromeLeftArm(pals@b, max.mismatch=3)

palindromeRightArm(pals@b, max.mismatch=3)

Whitespaces matter:

x1 <- BString("Delia saw I was aileD")
palindromeArmLength(x1)
palindromeLeftArm(x1)
palindromeRightArm(x1)

x2 <- BString("was it a car or a cat I saw”)

18 GENETIC_CODE

palindromeArmLength(x2)
palindromeLeftArm(x2)
palindromeRightArm(x2)

On a DNA or RNA sequence:

x3 <- DNAString("CCGAAAACCATGATGGTTGCCAG")
findPalindromes(x3)
findPalindromes(RNAString(x3))

Note that palindromes can be nested:
x4 <- DNAString("ACGTTNAACGTCCAAAATTTTCCACGTTNAACGT")
findPalindromes (x4, max.looplength=19)

Treat wobble base pairings as matches:

x5 <- RNAString("AUGUCUNNNNAGGCGU")

findPalindromes(x5, max.looplength=4, min.looplength=4)
findPalindromes(x5, max.looplength=4, min.looplength=4, max.mismatch=2)
findPalindromes(x5, max.looplength=4, min.looplength=4, allow.wobble=TRUE)

A real use case:

library(BSgenome.Dmelanogaster.UCSC.dm3)

chrX <- Dmelanogaster$chrX

chrX_pals@ <- findPalindromes(chrX, min.armlength=40, max.looplength=80)
chrX_palso

palindromeArmLength(chrX_pals@) # 251 70 262

Allowing up to 2 mismatches between the 2 arms:

chrX_pals2 <- findPalindromes(chrX, min.armlength=40, max.looplength=80,
max.mismatch=2)

chrX_pals2

palindromeArmLength(chrX_pals2, max.mismatch=2) # 254 77 44 48 40 264

GENETIC_CODE The Standard Genetic Code and its known variants

Description

Two predefined objects (GENETIC_CODE and RNA_GENETIC_CODE) that represent The Standard Ge-
netic Code.

Other genetic codes are stored in predefined table GENETIC_CODE_TABLE from which they can con-
veniently be extracted with getGeneticCode.

Usage

The Standard Genetic Code:
GENETIC_CODE
RNA_GENETIC_CODE

All the known genetic codes:
GENETIC_CODE_TABLE
getGeneticCode(id_or_name2="1", full.search=FALSE, as.data.frame=FALSE)

GENETIC_CODE 19

Arguments

id_or_name2 A single string that uniquely identifies the genetic code to extract. Should be
one of the values in the id or name2 columns of GENETIC_CODE_TABLE.

full.search By default, only the id and name2 columns of GENETIC_CODE_TABLE are searched
for an exact match with id_or_name2. If full. search is TRUE, then the search
is extended to the name column of GENETIC_CODE_TABLE and id_or_name2 only
needs to be a substring of one of the names in that column (also case is ignored).

as.data.frame Should the genetic code be returned as a data frame instead of a named character
vector?

Details

Formally, a genetic code is a mapping between the 64 tri-nucleotide sequences (called codons) and
amino acids.

The Standard Genetic Code (a.k.a. The Canonical Genetic Code, or simply The Genetic Code) is
the particular mapping that encodes the vast majority of genes in nature.

GENETIC_CODE and RNA_GENETIC_CODE are predefined named character vectors that represent this
mapping.

All the known genetic codes are summarized in GENETIC_CODE_TABLE, which is a predefined data

frame with one row per known genetic code. Use getGeneticCode to extract one genetic code at a
time from this object.

Value

GENETIC_CODE and RNA_GENETIC_CODE are both named character vectors of length 64 (the number
of all possible tri-nucleotide sequences) where each element is a single letter representing either an
amino acid or the stop codon "*" (aka termination codon).

The names of the GENETIC_CODE vector are the DNA codons i.e. the tri-nucleotide sequences (di-
rected 5’ to 3”) that are assumed to belong to the "coding DNA strand" (aka "sense DNA strand" or
"non-template DNA strand") of the gene.

The names of the RNA_GENETIC_CODE are the RNA codons i.e. the tri-nucleotide sequences (di-
rected 5° to 3’) that are assumed to belong to the mRNA of the gene.

Note that the values in the GENETIC_CODE and RNA_GENETIC_CODE vectors are the same, only their
names are different. The names of the latter are those of the former where all occurrences of T
(thymine) have been replaced by U (uracil).

Finally, both vectors have an alt_init_codons attribute on them, that lists the alternative initiation
codons. Note that codons that always translate to M (Methionine) (e.g. ATG in GENETIC_CODE or
AUG in RNA_GENETIC_CODE) are omitted from the alt_init_codons attribute.

GENETIC_CODE_TABLE is a data frame that contains all the known genetic codes listed at ftp://
ftp.ncbi.nih.gov/entrez/misc/data/gc.prt. The data frame has one row per known genetic
code and the 5 following columns:

* name: The long and very descriptive name of the genetic code.

* name2: The short name of the genetic code (not all genetic codes have one).

* id: The id of the genetic code.

ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt
ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt

20 GENETIC_CODE

* AAs: A 64-character string representing the genetic code itself in a compact form (i.e. one
letter per codon, the codons are assumed to be ordered like in GENETIC_CODE).

* Starts: A 64-character string indicating the Initiation Codons.
By default (i.e. when as.data.frame is set to FALSE), getGeneticCode returns a named char-
acter vector of length 64 similar to GENETIC_CODE i.e. it contains 1-letter strings from the Amino
Acid alphabet (see ?AA_ALPHABET) and its names are identical to names(GENETIC_CODE). In ad-
dition it has an attribute on it, the alt_init_codons attribute, that lists the alternative initiation

codons. Note that codons that always translate to M (Methionine) (e.g. ATG) are omitted from the
alt_init_codons attribute.

When as.data. frame is set to TRUE, getGeneticCode returns a data frame with 64 rows (one per
codon), rownames (3-letter strings representing the codons), and the 2 following columns:
e AA: A 1-letter string from the Amino Acid alphabet (see ?AA_ALPHABET) representing the
amino acid mapped to the codon ("*" is used to mark the stop codon).
e Start: A 1-letter string indicating an alternative mapping for the codon i.e. what amino acid
the codon is mapped to when it’s the first tranlated codon.

The rownames of the data frame are identical to names (GENETIC_CODE).

Author(s)
H. Pages

References

All the known genetic codes are described here:
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

The "official names" of the various codes ("Standard", "SGCO0", "Vertebrate Mitochondrial", "SGC1",
etc..) and theirids (1, 2, etc...) were taken from the print-form ASN.1 version of the above document
(version 4.0 at the time of this writing):

ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt

See Also
e AA_ALPHABET and AMINO_ACID_CODE.

e The translate and trinucleotideFrequency functions.
* DNAString, RNAString, and AAString objects.

B e
THE STANDARD GENETIC CODE
Bt e

GENETIC_CODE

Codon ATG is *always* translated to M (Methionine)
GENETIC_CODE[L["ATG"]]

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt

getSeq 21

Codons TTG and CTG are "normally” translated to L except when they are
the first translated codon (a.k.a. start codon or initiation codon),
in which case they are translated to M:

attr (GENETIC_CODE, "alt_init_codons")

GENETIC_CODELL"TTG"]]

GENETIC_CODE[L["CTG"]]

sort(table(GENETIC_CODE)) # the same amino acid can be encoded by 1
to 6 different codons

RNA_GENETIC_CODE

all(GENETIC_CODE == RNA_GENETIC_CODE) # TRUE

ALL THE KNOWN GENETIC CODES
e

GENETIC_CODE_TABLE[1:3 ,]

getGeneticCode("SGCO") # The Standard Genetic Code, again
stopifnot(identical (getGeneticCode("”SGCO"), GENETIC_CODE))

getGeneticCode("SGC1") # Vertebrate Mitochondrial
getGeneticCode("ascidian”, full.search=TRUE) # Ascidian Mitochondrial
B m oo
EXAMINE THE DIFFERENCES BETWEEN THE STANDARD CODE AND A NON-STANDARD
ONE

B m oo

idx <- which(GENETIC_CODE != getGeneticCode("SGC1"))
rbind(Standard=GENETIC_CODE[idx], SGCl=getGeneticCode("SGC1")[idx])

getSeq getSeq

Description

A generic function for extracting a set of sequences (or subsequences) from a sequence container
like a BSgenome object or other.

Usage

getSeq(x, ...)

22 gregexpr2

Arguments
X A BSgenome object or any other supported object. Do showMethods("getSeq")
to get the list of all supported types for x.
Any additional arguments needed by the specialized methods.
Value

An XString object or an XStringSet object or a character vector containing the extracted sequence(s).

See man pages of individual methods for the details e.g. with ?” getSeq,BSgenome-method™ to
access the man page of the method for BSgenome objects (make sure the BSgenome package is
loaded first).

See Also

getSeq,BSgenome-method, XString-class, XStringSet-class

Examples

Note that you need to load the package(s) defining the specialized
methods to have showMethods() display them and to be able to access
their man pages:

library(BSgenome)

showMethods ("getSeq")

gregexpr2 A replacement for R standard gregexpr function

Description

This is a replacement for the standard gregexpr function that does exact matching only. Standard
gregexpr() misses matches when they are overlapping. The gregexpr2 function finds all matches
but it only works in "fixed" mode i.e. for exact matching (regular expressions are not supported).

Usage

gregexpr2(pattern, text)

Arguments

pattern character string to be matched in the given character vector

text a character vector where matches are sought

HNF4alpha 23

Value

A list of the same length as text each element of which is an integer vector as in gregexpr, except
that the starting positions of all (even overlapping) matches are given. Note that, unlike gregexpr,
gregexpr2 doesn’t attach a "match.length" attribute to each element of the returned list because,
since it only works in "fixed" mode, then all the matches have the length of the pattern. Another
difference with gregexpr is that with gregexpr2, the pattern argument must be a single (non-NA,
non-empty) string.

Author(s)

H. Pages

See Also

gregexpr, matchPattern

Examples
gregexpr(”aa”, c(”XaaaYaa", "a"), fixed=TRUE)
gregexpr2(”aa", c("XaaaYaa"”, "a"))
HNF4alpha Known HNF4alpha binding sequences
Description

Seventy one known HNF4alpha binding sequences

Details

A DNAStringSet containing 71 known binding sequences for HNF4alpha.

Author(s)

P. Aboyoun

References

Ellrott, K., Yang, C., Sladek, F.M., Jiang, T. (2002) "Identifying transcription factor binding sites
through Markov chain optimations", Bioinformatics, 18 (Suppl. 2), S100-S109.

Examples

data(HNF4alpha)
HNF4alpha

24

injectHardMask

InDel-class InDel objects

Description

The InDel class is a container for storing insertion and deletion information.

Details

This is a generic class that stores any insertion and deletion information.
Accessor methods
In the code snippets below, x is a InDel object.

insertion(x): The insertion information.

deletion(x): The deletion information.

Author(s)

P. Aboyoun

See Also

pairwiseAlignment, PairwiseAlignments-class

injectHardMask Injecting a hard mask in a sequence

Description

injectHardMask allows the user to "fill" the masked regions of a sequence with an arbitrary letter

(typically the "+" letter).

Usage

injectHardMask(x, letter="+")

Arguments

X A MaskedXString or XStringViews object.
letter A single letter.

injectHardMask 25

Details

The name of the injectHardMask function was chosen because of the primary use that it is in-
tended for: converting a pile of active "soft masks" into a "hard mask". Here the pile of active
"soft masks" refers to the active masks that have been put on top of a sequence. In Biostrings, the
original sequence and the masks defined on top of it are bundled together in one of the dedicated
containers for this: the MaskedBString, MaskedDNAString, MaskedRNAString and Masked AAS-
tring containers (this is the MaskedXString family of containers). The original sequence is always
stored unmodified in a MaskedXString object so no information is lost. This allows the user to acti-
vate/deactivate masks without having to worry about losing the letters that are in the regions that are
masked/unmasked. Also this allows better memory management since the original sequence never
needs to be copied, even when the set of active/inactive masks changes.

However, there are situations where the user might want to really get rid of the letters that are in
some particular regions by replacing them with a junk letter (e.g. "+") that is guaranteed to not
interfer with the analysis that s/he is currently doing. For example, it’s very likely that a set of
motifs or short reads will not contain the "+" letter (this could easily be checked) so they will never
hit the regions filled with "+". In a way, it’s like the regions filled with "+" were masked but we
call this kind of masking "hard masking".

Some important differences between "soft" and "hard" masking:

* injectHardMask creates a (modified) copy of the original sequence. Using "soft masking"
does not.

* A function that is "mask aware" like alphabetFrequency or matchPattern will really skip
the masked regions when "soft masking" is used i.e. they will not walk thru the regions that
are under active masks. This might lead to some speed improvements when a high percentage
of the original sequence is masked. With "hard masking", the entire sequence is walked thru.

* Matches cannot span over masked regions with "soft masking". With "hard masking" they
can.
Value
An XString object of the same length as the orignal object x if x is a MaskedXString object, or of
the same length as subject(x) if it’s an XStringViews object.
Author(s)
H. Pages

See Also

maskMotif, MaskedXString-class, replaceLetterAt, chartr, XString, XStringViews-class

Examples

B oo
A. WITH AN XStringViews OBJECT

B m o
v2 <- Views("abCDefgHIJK", start=c(8, 3), end=c(14, 4))
injectHardMask(v2)

26 IUPAC_CODE_MAP

injectHardMask(v2, letter="=")

-
B. WITH A MaskedXString OBJECT

#H -
mask@® <- Mask(mask.width=29, start=c(3, 10, 25), width=c(6, 8, 5))

X <= DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")

masks(x) <- mask@

X

subject <- injectHardMask(x)

Matches can span over masked regions with "hard masking”:
matchPattern("ACggggggA", subject, max.mismatch=6)

but not with "soft masking”:

matchPattern(”ACggggggA”, x, max.mismatch=6)

TUPAC_CODE_MAP The IUPAC Extended Genetic Alphabet

Description

The IUPAC_CODE_MAP named character vector contains the mapping from the IUPAC nucleotide
ambiguity codes to their meaning.

The mergeIUPACLetters function provides the reverse mapping.

Usage

TUPAC_CODE_MAP
mergeIUPACLetters(x)

Arguments

X A vector of non-empty character strings made of [UPAC letters.

Details

ITUPAC nucleotide ambiguity codes are used for representing sequences of nucleotides where the
exact nucleotides that occur at some given positions are not known with certainty.

Value

TUPAC_CODE_MAP is a named character vector where the names are the [UPAC nucleotide ambiguity
codes and the values are their corresponding meanings. The meaning of each code is described by
a string that enumarates the base letters ("A", "C", "G" or "T") associated with the code.

The value returned by mergeIUPACLetters is an unnamed character vector of the same length as
its argument x where each element is an [UPAC nucleotide ambiguity code.

letter 27

Author(s)

H. Pages

References

http://www.chick.manchester.ac.uk/SiteSeer/IUPAC_codes.html

IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE: Cornish-Bowden (1985) Nucl.
Acids Res. 13: 3021-3030.

See Also

DNAString, RNAString

Examples

TUPAC_CODE_MAP

some_iupac_codes <- c("R", "M", "G", "N", "V")
TUPAC_CODE_MAP[some_iupac_codes]
mergeIUPACLetters(IUPAC_CODE_MAP[some_iupac_codes])

mergeIUPACLetters(c("Ca"”, "Acc", "aA", "MAAmC", "gM", "AB", "bS", "mk"))

letter Subsetting a string

Description

Extract a substring from a string by picking up individual letters by their position.

Usage

letter(x, i)

Arguments
X A character vector, or an XString, XStringViews or MaskedXString object.
i An integer vector with no NAs.

Details

Unlike with the substr or substring functions, i must contain valid positions.

Value
A character vector of length 1 when x is an XString or MaskedXString object (the masks are ignored
for the latter).
A character vector of the same length as x when x is a character vector or an XStringViews object.

Note that, because i must contain valid positions, all non-NA elements in the result are guaranteed
to have exactly length(i) characters.

http://www.chick.manchester.ac.uk/SiteSeer/IUPAC_codes.html

28

letterFrequency

See Also

subseq, XString-class, XStringViews-class, MaskedXString-class

Examples

x <- c(”abcd”, "ABC")
i<-c(3,1,1,2, 1

With a character vector:
letter(x[1]1, 3:1)

letter(x, 3)

letter(x, i)

#letter(x, 4) # Error!

With a BString object:
letter(BString(x[1]1), i) # returns a character vector
BString(x[11)[i] # returns a BString object

With an XStringViews object:
x2 <- as(BStringSet(x), "Views")
letter(x2, i)

letterFrequency Calculate the frequency of letters in a biological sequence, or the con-
sensus matrix of a set of sequences

Description

Given a biological sequence (or a set of biological sequences), the alphabetFrequency function
computes the frequency of each letter of the relevant alphabet.

letterFrequency is similar, but more compact if one is only interested in certain letters. It can
also tabulate letters "in common".

letterFrequencyInSlidingView is a more specialized version of letterFrequency for (non-
masked) XString objects. It tallys the requested letter frequencies for a fixed-width view, or window,
that is conceptually slid along the entire input sequence.

The consensusMatrix function computes the consensus matrix of a set of sequences, and the
consensusString function creates the consensus sequence from the consensus matrix based upon
specified criteria.

In this man page we call "DNA input" (or "RNA input") an XString, XStringSet, XStringViews or
MaskedXString object of base type DNA (or RNA).

Usage

alphabetFrequency(x, as.prob=FALSE, ...)
hasOnlyBaselLetters(x)
uniquelLetters(x)

letterFrequency 29

letterFrequency(x, letters, OR="|", as.prob=FALSE, ...)
letterFrequencyInSlidingView(x, view.width, letters, OR="|", as.prob=FALSE)
consensusMatrix(x, as.prob=FALSE, shift=0L, width=NULL, ...)

S4 method for signature 'matrix’
consensusString(x, ambiguityMap="?", threshold=0.5)
S4 method for signature 'DNAStringSet'
consensusString(x, ambiguityMap=IUPAC_CODE_MAP,
threshold=0.25, shift=0L, width=NULL)
S4 method for signature 'RNAStringSet'
consensusString(x,
ambiguityMap=
structure(as.character (RNAStringSet (DNAStringSet (IUPAC_CODE_MAP))),
names=
as.character (RNAStringSet (DNAStringSet (names(IUPAC_CODE_MAP))))),
threshold=0.25, shift=0L, width=NULL)

Arguments

X An XString, XStringSet, XString Views or MaskedXString object for alphabetFrequency,
letterFrequency, or uniquelLetters.
DNA or RNA input for hasOnlyBaselLetters.
An XString object for letterFrequencyInSlidingView.
A character vector, or an XStringSet or XStringViews object for consensusMatrix.
A consensus matrix (as returned by consensusMatrix), or an XStringSet or
XStringViews object for consensusString.

as.prob If TRUE then probabilities are reported, otherwise counts (the default).

view.width For letterFrequencyInSlidingView, the constant (e.g. 35, 48, 1000) size of
the "window" to slide along x. The specified letters are tabulated in each
window of length view.width. The rows of the result (see value) correspond to
the various windows.

letters For letterFrequency or letterFrequencyInSlidingView, a character vector
(e.g. "C", "CG", c("C", "G")) giving the letters to tabulate. When x is DNA or
RNA input, letters must come from alphabet(x). Except with OR=0, multi-
character elements of letters ('nchar’ > 1) are taken as groupings of letters into
subsets, to be tabulated in common ("or"’d), as if their alphabetFrequency’s were
added (Arithmetic). The columns of the result (see value) correspond to the
individual and sets of letters which are counted separately. Unrelated (and, with
some post-processing, related) counts may of course be obtained in separate
calls.

OR For letterFrequency or letterFrequencyInSlidingView, the string (default
|) to use as a separator in forming names for the "grouped" columns, e.g. "CIG".
The otherwise exceptional value @ (zero) disables or’ing and is provided for con-
venience, allowing a single multi-character string (or several strings) of letters
that should be counted separately. If some but not all letters are to be counted
separately, they must reside in separate elements of letters (with *nchar’ 1 unless
they are to be grouped with other letters), and OR cannot be 0.

30 letterFrequency

ambiguityMap Either a single character to use when agreement is not reached or a named char-
acter vector where the names are the ambiguity characters and the values are the
combinations of letters that comprise the ambiguity (e.g. 1ink{ ITUPAC_CODE_MAP}).
When ambiguityMap is a named character vector, occurrences of ambiguous
letters in x are replaced with their base alphabet letters that have been equally
weighted to sum to 1. (See Details for some examples.)

threshold The minimum probability threshold for an agreement to be declared. When
ambiguityMap is a single character, threshold is a single number in (0, 1].
When ambiguityMap is a named character vector (e.g. 1ink{ IUPAC_CODE_MAP}),
threshold is a single number in (0, 1/sum(nchar(ambiguityMap) == 1)].

Further arguments to be passed to or from other methods.

For the XStringViews and XStringSet methods, the collapse argument is ac-
cepted.

Except for letterFrequency or letterFrequencyInSlidingView, and with
DNA or RNA input, the baseOnly argument is accepted. If baseOnly is TRUE,
the returned vector (or matrix) only contains the frequencies of the letters that
belong to the "base" alphabet of x i.e. to the alphabet returned by alphabet(x,
baseOnly=TRUE).

shift An integer vector (recycled to the length of x) specifying how each sequence in x
should be (horizontally) shifted with respect to the first column of the consensus
matrix to be returned. By default (shift=0), each sequence in x has its first letter
aligned with the first column of the matrix. A positive shift value means that
the corresponding sequence must be shifted to the right, and a negative shift
value that it must be shifted to the left. For example, a shift of 5 means that it
must be shifted 5 positions to the right (i.e. the first letter in the sequence must
be aligned with the 6th column of the matrix), and a shift of -3 means that it
must be shifted 3 positions to the left (i.e. the 4th letter in the sequence must be
aligned with the first column of the matrix).

width The number of columns of the returned matrix for the consensusMatrix method
for XStringSet objects. When width=NULL (the default), then this method re-
turns a matrix that has just enough columns to have its last column aligned with
the rightmost letter of all the sequences in x after those sequences have been
shifted (see the shift argument above). This ensures that any wider consen-
sus matrix would be a "padded with zeros" version of the matrix returned when
width=NULL.

The length of the returned sequence for the consensusString method for XStringSet
objects.

Details

alphabetFrequency, letterFrequency, and letterFrequencyInSlidingView are generic func-
tions defined in the Biostrings package.

letterFrequency is similar to alphabetFrequency but specific to the letters of interest, hence
more compact, especially with OR non-zero.

letterFrequencyInSlidingView yields the same result, on the sequence x, that letterFrequency
would, if applied to the hypothetical (and possibly huge) XStringViews object consisting of all the

letterFrequency 31

intervals of length view.width on x. Taking advantage of the knowledge that successive "views"
are nearly identical, for letter counting purposes, it is both lighter and faster.

For letterFrequencyInSlidingView, a masked (MaskedXString) object x is only supported through
a cast to an (ordinary) XString such as unmasked (which includes its masked regions).

When consensusString is executed with a named character ambiguityMap argument, it weights
each input string equally and assigns an equal probability to each of the base letters represented by
an ambiguity letter. So for DNA and a threshold of 0.25, a "G" and an "R" would result in an "R"
since 172 "G" + 1/2 "R" =3/4 "G" + 1/4 "A" =>"R"; two "G"’s and one "R" would result in a "G"
since 2/3 "G" + 1/3 "R" =5/6 "G" + 1/6 "A" => "G"; and one "A" and one "N" would result in an
"N"since 1/2"A" + 1/2"N" =5/8 "A" + 1/8 "C" + 1/8 "G" + 1/8 "T" => "N".

Value

alphabetFrequency returns an integer vector when x is an XString or MaskedXString object.
When x is an XStringSet or XStringViews object, then it returns an integer matrix with length(x)
rows where the i-th row contains the frequencies for x[[1]]. If x is a DNA, RNA, or AA input,
then the returned vector is named with the letters in the alphabet. If the baseOnly argument is TRUE,
then the returned vector has only 5 elements for DNA/RNA input (4 elements corresponding to the
4 nucleotides + the ’other’ element) and 21 elements for AA input (20 elements corresponding to
the 20 base amino acids + the ’other’ element).

letterFrequency returns, similarly, an integer vector or matrix, but restricted and/or collated ac-
cording to letters and OR.

letterFrequencyInSlidingView returns, for an XString object x of length (nchar) L, an integer
matrix with L-view.width+1 rows, the i-th of which holding the letter frequencies of substring(x,
i, i+tview.width-1).

hasOnlyBaselLetters returns TRUE or FALSE indicating whether or not x contains only base letters
(i.e. As, Cs, Gs and Ts for DNA input, As, Cs, Gs and Us for RNA input, or any of the 20 standard
amino acids for AA input).

uniquelLetters returns a vector of 1-letter or empty strings. The empty string is used to represent
the nul character if x happens to contain any. Note that this can only happen if the base class of x is
BString.

An integer matrix with letters as row names for consensusMatrix.

A standard character string for consensusString.

Author(s)

H. Pages and P. Aboyoun; H. Jaffee for letterFrequency and letterFrequencyInSliding View

See Also

alphabet, coverage, oligonucleotideFrequency, countPDict, XString-class, XStringSet-class,
XStringViews-class, MaskedXString-class, strsplit

Examples

B o o
alphabetFrequency()

32

letterFrequency

B m oo
data(yeastSEQCHR1)
yeast]l <- DNAString(yeastSEQCHR1)

alphabetFrequency(yeast1)
alphabetFrequency(yeast1, baseOnly=TRUE)

hasOnlyBaseletters(yeast1)
uniquelLetters(yeast1)

With input made of multiple sequences:
library(drosophila2probe)

probes <- DNAStringSet(drosophila2probe)
alphabetFrequency(probes[1:50], baseOnly=TRUE)
alphabetFrequency(probes, baseOnly=TRUE, collapse=TRUE)

HH -
letterFrequency()

#H -
letterFrequency(probes[[1]], letters="ACGT", OR=0)

base_letters <- alphabet(probes, baseOnly=TRUE)

base_letters

letterFrequency(probes[[1]], letters=base_letters, OR=0)
base_letter_freqs <- letterFrequency(probes, letters=base_letters, OR=0)
head(base_letter_freqgs)

GC_content <- letterFrequency(probes, letters="CG")

head(GC_content)

letterFrequency(probes, letters="CG", collapse=TRUE)

#H# -
letterFrequencyInSlidingView()
-
data(yeastSEQCHR1)
x <- DNAString(yeastSEQCHR1)
view.width <- 48
letters <- c("A", "CG")
two_columns <- letterFrequencyInSlidingView(x, view.width, letters)
head(two_columns)
tail(two_columns)
three_columns <- letterFrequencyInSlidingView(x, view.width, letters, OR=0)
head(three_columns)
tail(three_columns)
stopifnot(identical (two_columns[, "C|G"],
three_columns[, "C"] + three_columns[, "G"1))

Note that, alternatively, 'three_columns' can also be obtained by

creating the views on 'x' (as a Views object) and by calling

alphabetFrequency() on it. But, of course, that is be *muchx less

efficient (both, in terms of memory and speed) than using

letterFrequencyInSlidingView():

v <- Views(x, start=seq_len(length(x) - view.width + 1), width=view.width)
v

three_columns2 <- alphabetFrequency(v, baseOnly=TRUE)[, c("A", "C", "G")]

letterFrequency

stopifnot(identical(three_columns2, three_columns))

Set the width of the view to length(x) to get the global frequencies:
letterFrequencyInSlidingView(x, letters="ACGTN", view.width=length(x), OR=0)

et
consensus*()
e
Read in ORF data:

file <- system.file("extdata”, "someORF.fa", package="Biostrings")

orf <- readDNAStringSet(file)

To illustrate, the following example assumes the ORF data
to be aligned for the first 10 positions (patently false):
orf1@ <- DNAStringSet(orf, end=10)

consensusMatrix(orf10, baseOnly=TRUE)

The following example assumes the first 10 positions to be aligned
after some incremental shifting to the right (patently false):
consensusMatrix(orf1@, baseOnly=TRUE, shift=0:6)
consensusMatrix(orf1@, baseOnly=TRUE, shift=0:6, width=10)

For the character matrix containing the "exploded” representation
of the strings, do:
as.matrix(orf1@, use.names=FALSE)

consensusMatrix() can be used to just compute the alphabet frequency
for each position in the input sequences:
consensusMatrix(probes, baseOnly=TRUE)

After sorting, the first 5 probes might look similar (at least on
their first bases):

consensusString(sort(probes)[1:5])

consensusString(sort(probes)[1:5], ambiguityMap = "N", threshold = 0.5)

Consensus involving ambiguity letters in the input strings
consensusString(DNAStringSet (c(”"NNNN","ACTG")))
consensusString (DNAStringSet (c("AANN","ACTG")))
consensusString(DNAStringSet (c("ACAG","ACAR")))
consensusString(DNAStringSet(c("ACAG","ACAR", "ACAG")))

#H -
C. RELATIONSHIP BETWEEN consensusMatrix() AND coverage()

-
Applying colSums() on a consensus matrix gives the coverage that

would be obtained by piling up (after shifting) the input sequences
on top of an (imaginary) reference sequence:

cm <- consensusMatrix(orf10, shift=0:6, width=10)

colSums(cm)

Note that this coverage can also be obtained with:
as.integer(coverage(IRanges(rep(1, length(orf)), width(orf)), shift=0:6, width=10))

34 longestConsecutive

longestConsecutive (Deprecated) Obtain the length of the longest substring containing
only ’letter’

Description

This function accepts a character vector and computes the length of the longest substring containing
only letter for each element of x.

Usage

longestConsecutive(seq, letter)

Arguments

seq Character vector.

letter Character vector of length 1, containing one single character.
Details

This function has been deprecated and won’t be replaced.

The elements of x can be in upper case, lower case or mixed. NAs are handled.

Value

An integer vector of the same length as x.

Author(s)

W. Huber

Examples

Not run:
v = c("AAACTGTGFG", "GGGAATT", "CCAAAAAAAAAATT")
longestConsecutive(v, "A")

End(Not run)

lowlevel-matching 35

lowlevel-matching Low-level matching functions

Description

In this man page we define precisely and illustrate what a "match" of a pattern P in a subject S
is in the context of the Biostrings package. This definition of a "match" is central to most pattern
matching functions available in this package: unless specified otherwise, most of them will adhere
to the definition provided here.

hasLetterAt checks whether a sequence or set of sequences has the specified letters at the specified
positions.

neditAt, isMatchingAt and which.isMatchingAt are low-level matching functions that only
look for matches at the specified positions in the subject.

Usage

hasLetterAt(x, letter, at, fixed=TRUE)

neditAt() and related utils:

neditAt(pattern, subject, at=1,
with.indels=FALSE, fixed=TRUE)

neditStartingAt(pattern, subject, starting.at=1,
with.indels=FALSE, fixed=TRUE)

neditEndingAt(pattern, subject, ending.at=1,
with.indels=FALSE, fixed=TRUE)

isMatchingAt() and related utils:
isMatchingAt(pattern, subject, at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)
isMatchingStartingAt(pattern, subject, starting.at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)
isMatchingEndingAt(pattern, subject, ending.at=1,

max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE)

which.isMatchingAt() and related utils:

which.isMatchingAt(pattern, subject, at=1,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

which.isMatchingStartingAt(pattern, subject, starting.at=1,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

which.isMatchingEndingAt(pattern, subject, ending.at=1,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
follow.index=FALSE, auto.reduce.pattern=FALSE)

36 lowlevel-matching

Arguments
X A character vector, or an XString or XStringSet object.
letter A character string or an XString object containing the letters to check.

at, starting.at, ending.at
An integer vector specifying the starting (for starting.at and at) or end-
ing (for ending.at) positions of the pattern relatively to the subject. With
auto.reduce.pattern (below), either a single integer or a constant vector of
length nchar (pattern) (below), to which the former is immediately converted.
For the hasLetterAt function, letter and at must have the same length.

pattern The pattern string (but see auto. reduce.pattern, below).
subject A character vector, or an XString or XStringSet object containing the subject
sequence(s).

max.mismatch, min.mismatch

Integer vectors of length >= 1 recycled to the length of the at (or starting.at,
or ending.at) argument. More details below.

with.indels See details below.

fixed Only with a DNAString or RNAString-based subject can a fixed value other
than the default (TRUE) be used.
If TRUE (the default), an ITUPAC ambiguity code in the pattern can only match
the same code in the subject, and vice versa. If FALSE, an IUPAC ambiguity
code in the pattern can match any letter in the subject that is associated with
the code, and vice versa. See TUPAC_CODE_MAP for more information about the
IUPAC Extended Genetic Alphabet.
fixed can also be a character vector, a subset of c("pattern”, "subject”).
fixed=c("pattern”, "subject”) is equivalent to fixed=TRUE (the default).
An empty vector is equivalent to fixed=FALSE. With fixed="subject", ambi-
guities in the pattern only are interpreted as wildcards. With fixed="pattern”,
ambiguities in the subject only are interpreted as wildcards.

follow. index Whether the single integer returned by which.isMatchingAt (and related utils)
should be the first *value* in at for which a match occurred, or its *index* in
at (the default).

auto.reduce.pattern
Whether pattern should be effectively shortened by 1 letter, from its beginning
forwhich.isMatchingStartingAt and from its end for which.isMatchingEndingAt,
for each successive (at, max.mismatch) "pair".

Details

A "match" of pattern P in subject S is a substring S’ of S that is considered similar enough to P
according to some distance (or metric) specified by the user. 2 distances are supported by most
pattern matching functions in the Biostrings package. The first (and simplest) one is the "number of
mismatching letters". It is defined only when the 2 strings to compare have the same length, so when
this distance is used, only matches that have the same number of letters as P are considered. The
second one is the "edit distance" (aka Levenshtein distance): it’s the minimum number of operations
needed to transform P into S’, where an operation is an insertion, deletion, or substitution of a single
letter. When this metric is used, matches can have a different number of letters than P.

lowlevel-matching 37

The neditAt function implements these 2 distances. If with.indels is FALSE (the default), then the
first distance is used i.e. neditAt returns the "number of mismatching letters" between the pattern
P and the substring S’ of S starting at the positions specified in at (note that neditAt is vectorized
so a long vector of integers can be passed thru the at argument). If with.indels is TRUE, then the
"edit distance" is used: for each position specified in at, P is compared to all the substrings S’ of S
starting at this position and the smallest distance is returned. Note that this distance is guaranteed
to be reached for a substring of length < 2*length(P) so, of course, in practice, P only needs to be
compared to a small number of substrings for every starting position.

Value

hasLetterAt: A logical matrix with one row per element in x and one column per letter/position to
check. When a specified position is invalid with respect to an element in x then the corresponding
matrix element is set to NA.

neditAt: If subject is an XString object, then return an integer vector of the same length as
at. If subject is an XStringSet object, then return the integer matrix with length(at) rows and
length(subject) columns defined by:

sapply(unname(subject),
function(x) neditAt(pattern, x, ...))

neditStartingAt is identical to neditAt except that the at argument is now called starting.at.
neditEndingAt is similar to neditAt except that the at argument is now called ending.at and
must contain the ending positions of the pattern relatively to the subject.

isMatchingAt: If subject is an XString object, then return the logical vector defined by:
min.mismatch <= neditAt(...) <= max.mismatch
If subject is an XStringSet object, then return the logical matrix with length(at) rows and
length(subject) columns defined by:
sapply(unname(subject),

function(x) isMatchingAt(pattern, x, ...))

isMatchingStartingAt is identical to isMatchingAt except that the at argument is now called
starting.at. isMatchingEndingAt is similar to isMatchingAt except that the at argument is
now called ending. at and must contain the ending positions of the pattern relatively to the subject.

which.isMatchingAt: The default behavior (follow. index=FALSE) is as follow. If subject is an
XString object, then return the single integer defined by:

which(isMatchingAt(...))[1]

If subject is an XStringSet object, then return the integer vector defined by:

38 lowlevel-matching

sapply(unname(subject),
function(x) which.isMatchingAt(pattern, x, ...))

If follow. index=TRUE, then the returned value is defined by:

at[which.isMatchingAt(..., follow.index=FALSE)]

which.isMatchingStartingAt is identical to which.isMatchingAt except that the at argument
is now called starting.at. which.isMatchingEndingAt is similar to which.isMatchingAt ex-
cept that the at argument is now called ending.at and must contain the ending positions of the
pattern relatively to the subject.

See Also

nucleotideFrequencyAt, matchPattern, matchPDict, matchLRPatterns, trimLRPatterns, IUPAC_CODE_MAP,
XString-class, align-utils

Examples

B mm o
hasLetterAt()
e LSRR PP
X <- DNAStringSet(c("AAACGT", "AACGT", "ACGT", "TAGGA"))

hasLetterAt(x, "AAAAAA", 1:6)

hasLetterAt() can be used to answer questions like: "which elements
in 'x' have an A at position 2 and a G at position 47"

gl <- hasLetterAt(x, "AG", c(2, 4))

which(rowSums(ql) == 2)

or "how many probes in the drosophila2 chip have T, G, T, A at

position 2, 4, 13 and 20, respectively?”
library(drosophila2probe)

probes <- DNAStringSet(drosophila2probe)

g2 <- haslLetterAt(probes, "TGTA", c(2, 4, 13, 20))

sum(rowSums (g2) == 4)

or "what's the probability to have an A at position 25 if there is
one at position 137?"

g3 <- haslLetterAt(probes, "AACGT", c(13, 25, 25, 25, 25))

sum(q3[, 11 & g3[, 21) / sum(q3[, 11)

Probabilities to have other bases at position 25 if there is an A
at position 13:

sum(q3[, 11 & g3[, 31) / sum(q3[, 11) # C

sum(q3[, 11 & g3[, 41) / sum(q3[, 11) # G

sum(gq3[, 11 & g3L , 51) / sum(q3[, 11) # T

See ?nucleotideFrequencyAt for another way to get those results.

e e S EE e
neditAt() / isMatchingAt() / which.isMatchingAt()

lowlevel-matching

B m o o
subject <- DNAString("GTATA")

Pattern "AT" matches subject "GTATA" at position 3 (exact match)
neditAt("AT", subject, at=3)
isMatchingAt("AT"”, subject, at=3)

... but not at position 1
neditAt("AT", subject)
isMatchingAt("AT", subject)

... unless we allow 1 mismatching letter (inexact match)
isMatchingAt("AT", subject, max.mismatch=1)

Here we look at 6 different starting positions and find 3 matches if
we allow 1 mismatching letter
isMatchingAt("AT"”, subject, at=0:5, max.mismatch=1)

No match
neditAt("NT", subject, at=1:4)
isMatchingAt("NT"”, subject, at=1:4)

2 matches if N is interpreted as an ambiguity (fixed=FALSE)
neditAt(”"NT", subject, at=1:4, fixed=FALSE)
isMatchingAt("NT", subject, at=1:4, fixed=FALSE)

max.mismatch != @ and fixed=FALSE can be used together
neditAt(”"NCA", subject, at=0:5, fixed=FALSE)
isMatchingAt("NCA", subject, at=0:5, max.mismatch=1, fixed=FALSE)

some_starts <- c(10:-10, NA, 6)

subject <- DNAString("ACGTGCA")

is_matching <- isMatchingAt("CAT", subject, at=some_starts, max.mismatch=1)
some_starts[is_matching]

which.isMatchingAt("CAT"”, subject, at=some_starts, max.mismatch=1)
which.isMatchingAt("CAT", subject, at=some_starts, max.mismatch=1,
follow.index=TRUE)

i
WITH INDELS

B =
subject <- BString("ABCDEFxxxCDEFxxxABBCDE")

neditAt("ABCDEF", subject, at=9)

neditAt("ABCDEF"”, subject, at=9, with.indels=TRUE)
isMatchingAt("ABCDEF"”, subject, at=9, max.mismatch=1, with.indels=TRUE)
isMatchingAt ("ABCDEF"”, subject, at=9, max.mismatch=2, with.indels=TRUE)
neditAt("ABCDEF", subject, at=17)

neditAt ("ABCDEF", subject, at=17, with.indels=TRUE)
neditEndingAt("ABCDEF", subject, ending.at=22)

neditEndingAt ("ABCDEF", subject, ending.at=22, with.indels=TRUE)

39

40 MaskedXString-class

MaskedXString-class MaskedXString objects

Description

The MaskedBString, MaskedDNAString, MaskedRNAString and MaskedA AString classes are con-
tainers for storing masked sequences.

All those containers derive directly (and with no additional slots) from the MaskedXString virtual
class.

Details

In Biostrings, a pile of masks can be put on top of a sequence. A pile of masks is represented by
a MaskCollection object and the sequence by an XString object. A MaskedXString object is the
result of bundling them together in a single object.

Note that, no matter what masks are put on top of it, the original sequence is always stored unmod-
ified in a MaskedXString object. This allows the user to activate/deactivate masks without having
to worry about losing the information stored in the masked/unmasked regions. Also this allows
efficient memory management since the original sequence never needs to be copied (modifying it
would require to make a copy of it first - sequences cannot and should never be modified in place in
Biostrings), even when the set of active/inactive masks changes.

Accessor methods

In the code snippets below, x is a MaskedXString object. For masks(x) and masks(x) <-y, it can
also be an XString object and y must be NULL or a MaskCollection object.

unmasked(x): Turns x into an XString object by dropping the masks.

masks(x): Turns x into a MaskCollection object by dropping the sequence.

masks(x) <-y: If x is an XString object and y is NULL, then this doesn’t do anything.
If x is an XString object and y is a MaskCollection object, then this turns x into a MaskedXString
object by putting the masks in y on top of it.
If x is a MaskedXString object and y is NULL, then this is equivalent to x <- unmasked(x).
If x is a MaskedXString object and y is a MaskCollection object, then this replaces the masks
currently on top of x by the masks in y.

alphabet(x): Equivalent to alphabet (unmasked(x)). See ?alphabet for more information.

length(x): Equivalent to length(unmasked(x)). See ?~length,XString-method™ for more
information.

"maskedwidth' and related methods

In the code snippets below, x is a MaskedXString object.

maskedwidth(x): Get the number of masked letters in x. A letter is considered masked iff it’s
masked by at least one active mask.

maskedratio(x): Equivalent to maskedwidth(x) / length(x).
nchar(x): Equivalent to length(x) - maskedwidth(x).

MaskedXString-class 41

Coercion

In the code snippets below, x is a MaskedXString object.

as(x, "Views"): Turns x into a Views object where the views are the unmasked regions of the
original sequence ("unmasked" means not masked by at least one active mask).

Other methods

In the code snippets below, x is a MaskedXString object.

collapse(x): Collapses the set of masks in x into a single mask made of all active masks.

gaps(x): Reverses all the masks i.e. each mask is replaced by a mask where previously unmasked
regions are now masked and previously masked regions are now unmasked.

Author(s)

H. Pages

See Also

* maskMotif

* injectHardMask

* alphabetFrequency
* reverseComplement
* XString-class

¢ MaskCollection-class

¢ Views-class

Examples

A. MASKING BY POSITION

#H -
mask@ <- Mask(mask.width=29, start=c(3, 10, 25), width=c(6, 8, 5))
X <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")

length(x) # same as width(mask®)

nchar(x) # same as length(x)

masks(x) <- mask@

X

length(x) # has not changed

nchar(x) # has changed

gaps(x)

Prepare a MaskCollection object of 3 masks ('mymasks') by running the
examples in the man page for these objects:
example(MaskCollection, package="IRanges")

Put it on 'x':
masks(x) <- mymasks

42

X
alphabetFrequency(x)

Deactivate all masks:
active(masks(x)) <- FALSE
X

Activate mask "C":
active(masks(x))["C"] <- TRUE
X

Turn MaskedXString object into a Views object:
as(x, "Views")

Drop the masks:
masks(x) <- NULL

X
alphabetFrequency(x)

B = m oo

B. MASKING BY CONTENT

B oo -

See ?maskMotif for masking by content

maskMotif

maskMotif Masking by content (or by position)

Description

Functions for masking a sequence by content (or by position).

Usage

maskMotif (x, motif, min.block.width=1, ...)
mask(x, start=NA, end=NA, pattern)

Arguments
X The sequence to mask.
motif The motif to mask in the sequence.

min.block.width

The minimum width of the blocks to mask.

Additional arguments for matchPattern.

start An integer vector containing the starting positions of the regions to mask.

end An integer vector containing the ending positions of the regions to mask.

pattern The motif to mask in the sequence.

maskMotif 43

Value

A MaskedXString object for maskMotif and an XStringViews object for mask.

Author(s)

H. Pages

See Also

read.Mask, matchPattern, XString-class, MaskedXString-class, XStringViews-class, MaskCollection-
class

Examples

e
EXAMPLE 1
HHE =

maskMotif (BString("AbcbbcbEEE"), "bcb")
maskMotif (BString("AbcbcbEEE"), "bcb")

maskMotif () can be used in an incremental way to mask more than 1

motif. Note that maskMotif() does not try to mask again what's

already masked (i.e. the new mask will never overlaps with the

previous masks) so the order in which the motifs are masked actually
matters as it will affect the total set of masked positions.

X0 <- BString("AbcbEEEEEbcbbEEEcbbchc™)

x1 <- maskMotif(x@, "E")

x1

x2 <- maskMotif(x1, "bcb")
X2

x3 <- maskMotif(x2, "b")
x3

Note that inverting the order in which "b" and "bcb” are masked would
lead to a different final set of masked positions.

Also note that the order doesn't matter if the motifs to mask don't
overlap (we assume that the motifs are unique) i.e. if the prefix of
each motif is not the suffix of any other motif. This is of course
the case when all the motifs have only 1 letter.

HHE e
EXAMPLE 2
HHE = m o m e

X <- DNAString("ACACAACTAGATAGNACTNNGAGAGACGC")

Mask the N-blocks

x1 <- maskMotif(x, "N")
x1

as(x1, "Views")
gaps(x1)

as(gaps(x1), "Views")

44

Mask the AC-blocks

match-utils

x2 <- maskMotif(x1, "AC")

X2
gaps(x2)

Mask the GA-blocks

x3 <- maskMotif(x2, "GA", min.block.width=5)
x3 # masks 2 and 3 overlap

gaps(x3)

EXAMPLE 3

T

library(BSgenome.Dmelanogaster.UCSC.dm3)
chrU <- Dmelanogaster$chru

chru

alphabetFrequency(chru)
chrU <- maskMotif(chrU, "N")

chru

alphabetFrequency(chru)

as(chrU, "Views")

as(gaps(chrU), "Views")

mask2 <- Mask(mask.width=length(chru),
start=c(50000, 350000, 543900), width=25000)

names(mask2) <- "some

ugly regions”

masks(chrU) <- append(masks(chrU), mask2)

chru
as(chrU, "Views")

as(gaps(chrU), "Views")

e

EXAMPLE 4

e
Note that unlike maskMotif (), mask() returns an XStringViews object!

masking "by position”
mask ("AxyxyxBC", 2, 6)

masking "by content”
mask ("AxyxyxBC", "xyx")

noN_chrU <- mask(chru
noN_chru

., "N™)

alphabetFrequency(noN_chrU, collapse=TRUE)

match-utils

Utility functions operating on the matches returned by a high-level
matching function

match-utils 45

Description

Miscellaneous utility functions operating on the matches returned by a high-level matching function
like matchPattern, matchPDict, etc...

Usage

mismatch(pattern, x, fixed=TRUE)
nmatch(pattern, x, fixed=TRUE)
nmismatch(pattern, x, fixed=TRUE)

S4 method for signature 'MIndex'
coverage(x, shift=0L, width=NULL, weight=1L)
S4 method for signature 'MaskedXString'
coverage(x, shift=0L, width=NULL, weight=1L)

Arguments
pattern The pattern string.
X An XString Views object for mismatch (typically, one returned by matchPattern(pattern,
subject)).
An Mlndex object for coverage, or any object for which a coverage method is
defined. See ?coverage.
fixed See ?” lowlevel-matching™.
shift, width See ?coverage.
weight An integer vector specifying how much each element in x counts.
Details

The mismatch function gives the positions of the mismatching letters of a given pattern relatively
to its matches in a given subject.

The nmatch and nmismatch functions give the number of matching and mismatching letters pro-
duced by the mismatch function.

The coverage function computes the "coverage" of a subject by a given pattern or set of patterns.

Value

mismatch: a list of integer vectors.
nmismatch: an integer vector containing the length of the vectors produced by mismatch.

coverage: an Rle object indicating the coverage of x. See ?coverage for the details. If x is an
Mindex object, the coverage of a given position in the underlying sequence (typically the subject
used during the search that returned x) is the number of matches (or hits) it belongs to.

See Also

lowlevel-matching, matchPattern, matchPDict, XString-class, XStringViews-class, MIndex-class,
coverage, align-utils

46 matchLRPatterns

Examples

-
mismatch() / nmismatch()

#H -
subject <- DNAString("ACGTGCA")

m <- matchPattern(”NCA", subject, max.mismatch=1, fixed=FALSE)
mismatch(”NCA", m)

nmismatch("”NCA", m)

e LR PR e
coverage()
G S e
coverage(m)

See ?matchPDict for examples of using coverage() on an MIndex object...

matchLRPatterns Find paired matches in a sequence

Description

The matchLRPatterns function finds paired matches in a sequence i.e. matches specified by a left
pattern, a right pattern and a maximum distance between the left pattern and the right pattern.

Usage

matchLRPatterns(Lpattern, Rpattern, max.gaplength, subject,
max.Lmismatch=0, max.Rmismatch=0,
with.Lindels=FALSE, with.Rindels=FALSE,
Lfixed=TRUE, Rfixed=TRUE)

Arguments
Lpattern The left part of the pattern.
Rpattern The right part of the pattern.

max.gaplength The max length of the gap in the middle i.e the max distance between the left
and right parts of the pattern.

subject An XString, XStringViews or MaskedXString object containing the target se-
quence.

max.Lmismatch The maximum number of mismatching letters allowed in the left part of the pat-
tern. If non-zero, an inexact matching algorithm is used (see the matchPattern
function for more information).

max.Rmismatch Same as max.Lmismatch but for the right part of the pattern.

matchLRPatterns 47

with.Lindels If TRUE then indels are allowed in the left part of the pattern. In that case
max.Lmismatch is interpreted as the maximum "edit distance" allowed in the
left part of the pattern.
See the with.indels argument of the matchPattern function for more infor-
mation.

with.Rindels Same as with.Lindels but for the right part of the pattern.

Lfixed Only with a DNAString or RNAString subject can a Lfixed value other than the
default (TRUE) be used.
With Lfixed=FALSE, ambiguities (i.e. letters from the [IUPAC Extended Genetic
Alphabet (see IUPAC_CODE_MAP) that are not from the base alphabet) in the left
pattern and in the subject are interpreted as wildcards i.e. they match any letter
that they stand for.
Lfixed can also be a character vector, a subset of c("pattern”, "subject”).
Lfixed=c("pattern”, "subject") is equivalent to Lfixed=TRUE (the default).
An empty vector is equivalent to Lfixed=FALSE. With Lfixed="subject", am-
biguities in the pattern only are interpreted as wildcards. With Lfixed="pattern”,
ambiguities in the subject only are interpreted as wildcards.

Rfixed Same as Lfixed but for the right part of the pattern.

