HDF5Array 1.35.7
The aim of this document is to measure the performance of the HDF5Array package for normalization and PCA of on-disk single cell data, two computationally intensive operations at the core of single cell analysis.
The benchmarks presented in the document were specifically designed to observe the impact of two critical parameters on performance:
Hopefully these benchmarks will also facilitate comparing performance of single cell analysis workflows based on HDF5Array with workflows based on other tools like Seurat or Scanpy.
Let’s install and load HDF5Array as well as the other packages used in this vignette:
if (!require("BiocManager", quietly=TRUE))
install.packages("BiocManager")
pkgs <- c("HDF5Array", "ExperimentHub", "DelayedMatrixStats", "RSpectra")
BiocManager::install(pkgs)
Load the packages:
library(HDF5Array)
library(ExperimentHub)
library(DelayedMatrixStats)
library(RSpectra)
The datasets that we will use for our benchmarks are subsets of the 1.3 Million Brain Cell Dataset from 10x Genomics.
The 1.3 Million Brain Cell Dataset is a 27,998 x 1,306,127 matrix of counts with one gene per row and one cell per column. It’s available via the ExperimentHub package in two forms, one that uses a sparse representation and one that uses a dense representation:
hub <- ExperimentHub()
hub["EH1039"]$description # sparse representation
## [1] "Single-cell RNA-seq data for 1.3 million brain cells from E18 mice. 'HDF5-based 10X Genomics' format originally provided by TENx Genomics"
hub["EH1040"]$description # dense representation
## [1] "Single-cell RNA-seq data for 1.3 million brain cells from E18 mice. Full rectangular, block-compressed format, 1GB block size."
The two datasets are big HDF5 files stored on a remote location. Let’s download them to the local ExperimentHub cache if they are not there yet:
## Note that this will be quick if the HDF5 files are already in the
## local ExperimentHub cache. Otherwise, it will take a while!
full_sparse_h5 <- hub[["EH1039"]]
full_dense_h5 <- hub[["EH1040"]]
We use the TENxMatrix()
and HDF5Array()
constructors to bring the
sparse and dense datasets in R as DelayedArray derivatives. Note that
this does not load the matrix data in memory.
Bring the sparse dataset in R:
## Use 'h5ls(full_sparse_h5)' to find out the group.
full_sparse <- TENxMatrix(full_sparse_h5, group="mm10")
Note that full_sparse
is a 27,998 x 1,306,127 TENxMatrix object:
class(full_sparse)
## [1] "TENxMatrix"
## attr(,"package")
## [1] "HDF5Array"
dim(full_sparse)
## [1] 27998 1306127
See ?TENxMatrix
in the HDF5Array package for more
information about TENxMatrix objects.
Bring the dense dataset in R:
## Use 'h5ls(full_dense_h5)' to find out the name of the dataset.
full_dense <- HDF5Array(full_dense_h5, name="counts")
Note that full_dense
is a 27,998 x 1,306,127 HDF5Matrix object that
contains the same data as full_sparse
:
class(full_dense)
## [1] "HDF5Matrix"
## attr(,"package")
## [1] "HDF5Array"
dim(full_dense)
## [1] 27998 1306127
See ?HDF5Matrix
in the HDF5Array package for more
information about HDF5Matrix objects.
Finally note that the dense HDF5 file does not contain the dimnames
of the matrix so we manually add them to full_sparse
:
dimnames(full_dense) <- dimnames(full_sparse)
For our benchmarks below, we create subsets of the 1.3 Million Brain
Cell Dataset of increasing sizes: subsets with 12,500 cells, 25,000 cells,
50,000 cells, 100,000 cells, and 200,000 cells. Note that subsetting a
TENxMatrix or HDF5Matrix object with [
is a delayed operation so has
virtually no cost:
sparse1 <- full_sparse[ , 1:12500]
dense1 <- full_dense[ , 1:12500]
sparse2 <- full_sparse[ , 1:25000]
dense2 <- full_dense[ , 1:25000]
sparse3 <- full_sparse[ , 1:50000]
dense3 <- full_dense[ , 1:50000]
sparse4 <- full_sparse[ , 1:100000]
dense4 <- full_dense[ , 1:100000]
sparse5 <- full_sparse[ , 1:200000]
dense5 <- full_dense[ , 1:200000]
We’ll use the following code for normalization:
## Also does variable gene selection by keeping the 1000 most variable
## genes by default.
simple_normalize <- function(mat, num_variable_genes=1000)
{
stopifnot(length(dim(mat)) == 2, !is.null(rownames(mat)))
mat <- mat[rowSums(mat) > 0, ]
mat <- t(t(mat) * 10000 / colSums(mat))
row_vars <- rowVars(mat)
rv_order <- order(row_vars, decreasing=TRUE)
variable_idx <- head(rv_order, n=num_variable_genes)
mat <- log1p(mat[variable_idx, ])
mat / rowSds(mat)
}
and the following code for PCA:
simple_PCA <- function(mat, k=25)
{
stopifnot(length(dim(mat)) == 2)
row_means <- rowMeans(mat)
Ax <- function(x, args)
(as.numeric(mat %*% x) - row_means * sum(x))
Atx <- function(x, args)
(as.numeric(x %*% mat) - as.vector(row_means %*% x))
RSpectra::svds(Ax, Atrans=Atx, k=k, dim=dim(mat))
}
Note that the implementations of simple_normalize()
and simple_PCA()
are expected to work on any matrix-like object regardless of its exact
type/representation e.g. it can be an ordinary matrix, a SparseMatrix
object from the SparseArray package, a dgCMatrix object
from the Matrix package, a DelayedMatrix derivative
(TENxMatrix, HDF5Matrix, TileDBMatrix), etc…
However, when the input is a DelayedMatrix object or derivative, it’s important to be aware that:
Summarization methods like sum()
, colSums()
, rowVars()
, or rowSds()
,
and matrix multiplication (%*%
), are block-processed operations.
The block size is 100 Mb by default. Increasing or decreasing the block size will typically increase or decrease the memory usage of block-processed operations. It will also impact performance, but sometimes in unexpected or counter-intuitive ways.
The block size can be controlled with DelayedArray::getAutoBlockSize()
and DelayedArray::setAutoBlockSize()
.
For our benchmarks below, we’ll use the following block sizes:
While manually running our benchmarks below on a Linux or macOS system, we will also monitor memory usage at the command line in a terminal with:
(while true; do ps u -p <PID>; sleep 1; done) >ps.log 2>&1 &
where <PID>
is the process id of our R session. This will allow us
to measure the maximum amount of memory used by the calls
to simple_normalize()
or simple_PCA()
.
In this section we run simple_normalize()
on the two smaller test
datasets only (27,998 x 12,500 and 27,998 x 25,000, sparse and dense),
and we report timings and memory usage.
See the Timings obtained on various systems section at the end of this
document for simple_normalize()
and simple_pca()
timings obtained
on various systems on all our test datasets and using three different
block sizes: 40 Mb, 100 Mb, and 250 Mb.
Set block size to 250 Mb:
DelayedArray::setAutoBlockSize(2.5e8)
## automatic block size set to 2.5e+08 bytes (was 1e+08)
dim(sparse1)
## [1] 27998 12500
system.time(sparse1n <- simple_normalize(sparse1))
## user system elapsed
## 94.724 6.958 101.659
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 9709147 518.6 17627307 941.4 12985235 693.5
## Vcells 25334282 193.3 98946684 755.0 128753495 982.4
dim(sparse1n)
## [1] 1000 12500
Note that sparse1n
is a DelayedMatrix object that carrries delayed
operations. These can be displayed with showtree()
:
class(sparse1n)
## [1] "DelayedMatrix"
## attr(,"package")
## [1] "DelayedArray"
showtree(sparse1n)
## 1000x12500 double, sparse: DelayedMatrix object
## └─ 1000x12500 double, sparse: Unary iso op with args
## └─ 1000x12500 double, sparse: Stack of 1 unary iso op(s)
## └─ 1000x12500 double, sparse: Aperm (perm=c(2,1))
## └─ 12500x1000 double, sparse: Unary iso op with args
## └─ 12500x1000 double, sparse: Stack of 1 unary iso op(s)
## └─ 12500x1000 integer, sparse: Aperm (perm=c(2,1))
## └─ 1000x12500 integer, sparse: Subset
## └─ 27998x1306127 integer, sparse: [seed] TENxMatrixSeed object
Let’s write sparse1n
to a temporary HDF5 file so we can do PCA on it later:
sparse1n_path <- tempfile()
sparse1n <- writeTENxMatrix(sparse1n, sparse1n_path, group="matrix", level=0)
Writing a DelayedMatrix object to an HDF5 file with writeTENxMatrix()
has a significant cost, but, on the other hand, it has the advantage of
triggering on-disk realization of the object. This means that all the
delayed operations carried by the object get realized on-the-fly before
the matrix data lands on the disk:
class(sparse1n)
## [1] "TENxMatrix"
## attr(,"package")
## [1] "HDF5Array"
showtree(sparse1n) # "pristine" object (i.e. no more delayed operations)
## 1000x12500 double, sparse: TENxMatrix object
## └─ 1000x12500 double, sparse: [seed] TENxMatrixSeed object
This will make this new TENxMatrix object more efficient for whatever block-processed operations will come next.
dim(sparse2)
## [1] 27998 25000
system.time(sparse2n <- simple_normalize(sparse2))
## user system elapsed
## 166.493 10.109 176.790
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 9722227 519.3 17627307 941.4 12985235 693.5
## Vcells 25424279 194.0 171203276 1306.2 210802198 1608.3
dim(sparse2n)
## [1] 1000 25000
Let’s write sparse2n
to a temporary HDF5 file so we can do PCA on it later:
sparse2n_path <- tempfile()
writeTENxMatrix(sparse2n, sparse2n_path, group="matrix", level=0)
With this block size (250 Mb), memory usage (as reported by Unix
command ps u -p <PID>
, see Monitoring memory usage above in
this document) remained < 3.7 Gb at all time.
Set block size to 40 Mb:
DelayedArray::setAutoBlockSize(4e7)
## automatic block size set to 4e+07 bytes (was 2.5e+08)
dim(dense1)
## [1] 27998 12500
system.time(dense1n <- simple_normalize(dense1))
## user system elapsed
## 92.784 11.124 103.944
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 9728990 519.6 17627307 941.4 12985235 693.5
## Vcells 25513016 194.7 84410958 644.1 210802198 1608.3
dim(dense1n)
## [1] 1000 12500
Note that, like sparse1n
and sparse2n
above, dense1n
is a
DelayedMatrix object that carrries delayed operations. These can
be displayed with showtree()
:
class(dense1n)
## [1] "DelayedMatrix"
## attr(,"package")
## [1] "DelayedArray"
showtree(dense1n)
## 1000x12500 double: DelayedMatrix object
## └─ 1000x12500 double: Set dimnames
## └─ 1000x12500 double: Unary iso op with args
## └─ 1000x12500 double: Stack of 1 unary iso op(s)
## └─ 1000x12500 double: Aperm (perm=c(2,1))
## └─ 12500x1000 double: Unary iso op with args
## └─ 12500x1000 double: Stack of 1 unary iso op(s)
## └─ 12500x1000 integer: Aperm (perm=c(2,1))
## └─ 1000x12500 integer: Subset
## └─ 27998x1306127 integer: [seed] HDF5ArraySeed object
Let’s write dense1n
to a temporary HDF5 file so we can do PCA on it later:
dense1n_path <- tempfile()
dense1n <- writeHDF5Array(dense1n, dense1n_path, name="normalized_counts", level=0)
Note that, like with writeTENxMatrix()
, writing a DelayedMatrix object
to an HDF5 file with writeHDF5Array()
has a significant cost but also has
the advantage of triggering on-disk realization of the object:
class(dense1n)
## [1] "HDF5Matrix"
## attr(,"package")
## [1] "HDF5Array"
showtree(dense1n) # "pristine" object (i.e. no more delayed operations)
## 1000x12500 double: HDF5Matrix object
## └─ 1000x12500 double: [seed] HDF5ArraySeed object
This will make this new HDF5Array object more efficient for whatever block-processed operations will come next.
dim(dense2)
## [1] 27998 25000
system.time(dense2n <- simple_normalize(dense2))
## user system elapsed
## 216.636 26.512 243.648
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 9732049 519.8 17627307 941.4 12985235 693.5
## Vcells 25535387 194.9 86528645 660.2 210802198 1608.3
dim(dense2n)
## [1] 1000 25000
Let’s write dense2n
to a temporary HDF5 file so we can do PCA on it later:
dense2n_path <- tempfile()
writeHDF5Array(dense2n, dense2n_path, name="normalized_counts", level=0)
With this block size (40 Mb), memory usage (as reported by Unix
command ps u -p <PID>
, see Monitoring memory usage above in
this document) remained < 2.8 Gb at all time.
In this section we run simple_pca()
on the two normalized datasets
obtained in the previous section (1000 x 12,500 and 1000 x 25,000,
sparse and dense), and we report timings and memory usage.
See the Timings obtained on various systems section at the end of this
document for simple_normalize()
and simple_pca()
timings obtained
on various systems on all our test datasets and using three different
block sizes: 40 Mb, 100 Mb, and 250 Mb.
Set block size to 40 Mb:
DelayedArray::setAutoBlockSize(4e7)
## automatic block size set to 4e+07 bytes (was 4e+07)
sparse1n <- TENxMatrix(sparse1n_path)
dim(sparse1n)
## [1] 1000 12500
system.time(pca1s <- simple_PCA(sparse1n))
## user system elapsed
## 85.008 4.849 88.858
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 9738449 520.1 17627307 941.4 12985235 693.5
## Vcells 25885965 197.5 86528645 660.2 210802198 1608.3
sparse2n <- TENxMatrix(sparse2n_path)
dim(sparse2n)
## [1] 1000 25000
system.time(pca2s <- simple_PCA(sparse2n))
## user system elapsed
## 173.067 8.054 167.042
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 9738371 520.1 17627307 941.4 12985235 693.5
## Vcells 26486364 202.1 86528645 660.2 210802198 1608.3
With this block size (40 Mb), memory usage (as reported by Unix
command ps u -p <PID>
, see Monitoring memory usage above in
this document) remained < 2.4 Gb at all time.
Set block size to 100 Mb (the default):
DelayedArray::setAutoBlockSize()
## automatic block size set to 1e+08 bytes (was 4e+07)
dense1n <- HDF5Array(dense1n_path, name="normalized_counts")
dim(dense1n)
## [1] 1000 12500
system.time(pca1d <- simple_PCA(dense1n))
## user system elapsed
## 73.782 18.541 92.772
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 9739115 520.2 17627307 941.4 12985235 693.5
## Vcells 26824795 204.7 98902944 754.6 210802198 1608.3
dense2n <- HDF5Array(dense2n_path, name="normalized_counts")
dim(dense2n)
## [1] 1000 25000
system.time(pca2d <- simple_PCA(dense2n))
## user system elapsed
## 130.356 38.253 168.687
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 9739028 520.2 17627307 941.4 12985235 693.5
## Vcells 27386302 209.0 90445965 690.1 210802198 1608.3
With this block size (100 Mb), memory usage (as reported by Unix
command ps u -p <PID>
, see Monitoring memory usage above in
this document) remained < 2.7 Gb at all time.
stopifnot(all.equal(pca1s, pca1d))
stopifnot(all.equal(pca2s, pca2d))
Here we report normalization & PCA timings obtained on various systems.
For each system, the results are summarized in a table that shows
the simple_normalize()
and simple_pca()
timings obtained on all our test
datasets and using three different block sizes: 40 Mb, 100 Mb, and 250 Mb.
The times with light green background
correspond to the best time amongst the three different block sizes for
a given operation.
# Output of 'sudo hdparm -Tt <device>': Timing cached reads: 35188 MB in 2.00 seconds = 17620.75 MB/sec Timing buffered disk reads: 7842 MB in 3.00 seconds = 2613.57 MB/sec |
sparse (TENxMatrix) |
dense (HDF5Matrix) |
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
object dimensions (genes x cells) |
object name |
block size = 40 Mb |
block size = 100 Mb |
block size = 250 Mb |
object name |
block size = 40 Mb |
block size = 100 Mb |
block size = 250 Mb |
||||||
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
|||
Normalization | ||||||||||||||
27998 x 12500 |
sparse1
|
67 | 50 | 42 |
dense1
|
51 | 53 | 47 | ||||||
27998 x 25000 |
sparse2
|
141 | 113 | 85 |
dense2
|
103 | 112 | 100 | ||||||
27998 x 50000 |
sparse3
|
275 | 214 | 174 |
dense3
|
207 | 225 | 221 | ||||||
27998 x 100000 |
sparse4
|
532 | 440 | 346 |
dense4
|
416 | 458 | 449 | ||||||
27998 x 200000 |
sparse5
|
1088 | 895 | 758 |
dense5
|
856 | 959 | 918 | ||||||
PCA | ||||||||||||||
1000 x 12500 |
sparse1n
|
34 | 46 | 47 |
dense1n
|
38 | 42 | 36 | ||||||
1000 x 25000 |
sparse2n
|
70 | 81 | 76 |
dense2n
|
74 | 80 | 125 | ||||||
1000 x 50000 |
sparse3n
|
144 | 193 | 167 |
dense3n
|
193 | 179 | 156 | ||||||
1000 x 100000 |
sparse4n
|
296 | 317 | 337 |
dense4n
|
416 | 463 | 425 | ||||||
1000 x 200000 |
sparse5n
|
576 | 671 | 685 |
dense5n
|
1082 | 889 | 997 |
Note: “max. mem. used” columns to be populated soon.
# Output of 'sudo hdparm -Tt <device>': Timing cached reads: 20592 MB in 1.99 seconds = 10361.41 MB/sec Timing buffered disk reads: 1440 MB in 3.00 seconds = 479.66 MB/sec |
sparse (TENxMatrix) |
dense (HDF5Matrix) |
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
object dimensions (genes x cells) |
object name |
block size = 40 Mb |
block size = 100 Mb |
block size = 250 Mb |
object name |
block size = 40 Mb |
block size = 100 Mb |
block size = 250 Mb |
||||||
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
|||
Normalization | ||||||||||||||
27998 x 12500 |
sparse1
|
119 | 82 | 74 |
dense1
|
87 | 88 | 83 | ||||||
27998 x 25000 |
sparse2
|
227 | 194 | 144 |
dense2
|
177 | 188 | 169 | ||||||
27998 x 50000 |
sparse3
|
442 | 346 | 297 |
dense3
|
345 | 378 | 352 | ||||||
27998 x 100000 |
sparse4
|
855 | 742 | 602 |
dense4
|
707 | 736 | 722 | ||||||
27998 x 200000 |
sparse5
|
1818 | 1472 | 1275 |
dense5
|
1459 | 1558 | 1502 | ||||||
PCA | ||||||||||||||
1000 x 12500 |
sparse1n
|
75 | 82 | 84 |
dense1n
|
69 | 70 | 70 | ||||||
1000 x 25000 |
sparse2n
|
141 | 181 | 131 |
dense2n
|
128 | 149 | 208 | ||||||
1000 x 50000 |
sparse3n
|
296 | 278 | 309 |
dense3n
|
288 | 290 | 277 | ||||||
1000 x 100000 |
sparse4n
|
510 | 645 | 569 |
dense4n
|
592 | 533 | 744 | ||||||
1000 x 200000 |
sparse5n
|
1146 | 1304 | 1307 |
dense5n
|
1727 | 1510 | 1658 |
Note: “max. mem. used” columns to be populated soon.
sparse (TENxMatrix) |
dense (HDF5Matrix) |
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
object dimensions (genes x cells) |
object name |
block size = 40 Mb |
block size = 100 Mb |
block size = 250 Mb |
object name |
block size = 40 Mb |
block size = 100 Mb |
block size = 250 Mb |
||||||
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
time in seconds |
max. mem. used |
|||
Normalization | ||||||||||||||
27998 x 12500 |
sparse1
|
57 | 42 | 34 |
dense1
|
37 | 35 | 32 | ||||||
27998 x 25000 |
sparse2
|
119 | 93 | 67 |
dense2
|
71 | 75 | 68 | ||||||
27998 x 50000 |
sparse3
|
236 | 182 | 141 |
dense3
|
141 | 148 | 149 | ||||||
27998 x 100000 |
sparse4
|
463 | 361 | 281 |
dense4
|
283 | 305 | 305 | ||||||
27998 x 200000 |
sparse5
|
949 | 736 | 604 |
dense5
|
578 | 618 | 624 | ||||||
PCA | ||||||||||||||
1000 x 12500 |
sparse1n
|
27 | 33 | 34 |
dense1n
|
32 | 30 | 25 | ||||||
1000 x 25000 |
sparse2n
|
64 | 65 | 60 |
dense2n
|
63 | 56 | 95 | ||||||
1000 x 50000 |
sparse3n
|
119 | 150 | 133 |
dense3n
|
152 | 133 | 111 | ||||||
1000 x 100000 |
sparse4n
|
230 | 254 | 269 |
dense4n
|
301 | 376 | 321 | ||||||
1000 x 200000 |
sparse5n
|
436 | 665 | 528 |
dense5n
|
825 | 714 | 782 |
Note: “max. mem. used” columns to be populated soon.
The Supermicro SuperServer 1029GQ-TRT machine is significantly slower than the other machines. This is most likely due to the less performant disk.
For PCA, choosing the sparse representation (TENxMatrix) and using small block sizes (40 Mb) is a clear winner.
For normalization, there’s no clear best choice between the parse and dense representations. More precisely, for this operation, the sparse representation tends to give the best times when using bigger blocks (250 Mb), whereas the dense representation tends to give the best times when using smaller blocks (40 Mb). However, based on the above benchmarks, there’s no clear best choice between “sparse with big blocks” and “dense with small blocks” in terms of speed. Maybe extending the benchmarks to include more extreme block sizes (e.g. 20 Mb and 500 Mb) could help break the tie.
Normalization and PCA are roughly linear in time, regardless of representation (sparse or dense) or block size.
[Needs confirmation] Normalization and PCA both perform at almost constant memory, regardless of representation (sparse or dense).
sessionInfo()
## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] TENxBrainData_1.27.0 SingleCellExperiment_1.29.1
## [3] SummarizedExperiment_1.37.0 Biobase_2.67.0
## [5] GenomicRanges_1.59.1 GenomeInfoDb_1.43.2
## [7] RSpectra_0.16-2 DelayedMatrixStats_1.29.1
## [9] ExperimentHub_2.15.0 AnnotationHub_3.15.0
## [11] BiocFileCache_2.15.1 dbplyr_2.5.0
## [13] HDF5Array_1.35.7 rhdf5_2.51.2
## [15] DelayedArray_0.33.4 SparseArray_1.7.4
## [17] S4Arrays_1.7.1 IRanges_2.41.2
## [19] abind_1.4-8 S4Vectors_0.45.2
## [21] MatrixGenerics_1.19.1 matrixStats_1.5.0
## [23] BiocGenerics_0.53.3 generics_0.1.3
## [25] Matrix_1.7-1 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] KEGGREST_1.47.0 xfun_0.50 bslib_0.8.0
## [4] lattice_0.22-6 rhdf5filters_1.19.0 vctrs_0.6.5
## [7] tools_4.5.0 curl_6.1.0 tibble_3.2.1
## [10] AnnotationDbi_1.69.0 RSQLite_2.3.9 blob_1.2.4
## [13] pkgconfig_2.0.3 sparseMatrixStats_1.19.0 lifecycle_1.0.4
## [16] GenomeInfoDbData_1.2.13 compiler_4.5.0 Biostrings_2.75.3
## [19] htmltools_0.5.8.1 sass_0.4.9 yaml_2.3.10
## [22] pillar_1.10.1 crayon_1.5.3 jquerylib_0.1.4
## [25] cachem_1.1.0 mime_0.12 tidyselect_1.2.1
## [28] digest_0.6.37 purrr_1.0.2 dplyr_1.1.4
## [31] bookdown_0.42 BiocVersion_3.21.1 fastmap_1.2.0
## [34] grid_4.5.0 cli_3.6.3 magrittr_2.0.3
## [37] withr_3.0.2 filelock_1.0.3 UCSC.utils_1.3.1
## [40] rappdirs_0.3.3 bit64_4.6.0-1 rmarkdown_2.29
## [43] XVector_0.47.2 httr_1.4.7 bit_4.5.0.1
## [46] png_0.1-8 memoise_2.0.1 evaluate_1.0.3
## [49] knitr_1.49 rlang_1.1.5 Rcpp_1.0.14
## [52] glue_1.8.0 DBI_1.2.3 BiocManager_1.30.25
## [55] jsonlite_1.8.9 R6_2.5.1 Rhdf5lib_1.29.0