Package ‘gwascat’

January 21, 2024

Title representing and modeling data in the EMBL-EBI GWAS catalog
Version 2.34.0
Author VJ Carey <stvjc@channing.harvard.edu>
Description Represent and model data in the EMBL-EBI GWAS catalog.
Enhances SNPlocs.Hsapiens.dbSNP144.GRCh37
Depends R (>= 3.5.0), methods
Imports S4Vectors (>= 0.9.25), IRanges, GenomeInfoDb, GenomicRanges
 (>= 1.29.6), GenomicFeatures, readr, Biostrings, AnnotationDbi,
 BiocFileCache, snpStats, VariantAnnotation, AnnotationHub
Suggests DO.db, DT, knitr, RBGL, testthat, rmarkdown, dplyr, Gviz,
 Rsamtools, rtracklayer, graph, ggbio, DelayedArray,
 TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, BiocStyle
VignetteBuilder knitr
Maintainer VJ Carey <stvjc@channing.harvard.edu>
License Artistic-2.0
LazyData no
biocViews Genetics
RoxygenNote 7.2.1
Encoding UTF-8
git_url https://git.bioconductor.org/packages/gwascat
git_branch RELEASE_3_18
git_last_commit 9252d33
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-21
R topics documented:

- `as_GRanges` 2
- `bindcadd_snv` 3
- `chklocs` 4
- `ebicat_2020_04_30` 5
- `g17SM` 5
- `getRsids` 5
- `getRsids,gwaswloc-method` 6
- `getTraits` 6
- `getTraits,gwaswloc-method` 7
- `get_cached_gwascat` 7
- `gg17N` 8
- `gr6.0_hg38` 8
- `gw6.rs_17` 9
- `gwascat_from_AHub` 9
- `gwasstagger` 10
- `gwaswloc-class` 10
- `gwcat_snapshot` 10
- `gwcex2gviz` 11
- `ldtagr` 12
- `locon6` 13
- `loc4trait` 13
- `low17` 14
- `makeCurrentGwascat` 14
- `obo2graphNEL` 15
- `process_gwas_dataframe` 17
- `riskyAlleleCount` 17
- `si.hs.37` 18
- `si.hs.38` 18
- `subsetByChromosome` 19
- `subsetByChromosome,gwaswloc-method` ... 19
- `subsetByTraits` 20
- `subsetByTraits,gwaswloc-method` 20
- `topTraits` 21
- `traitsManh` 21
- `[.gwaswloc,ANY,ANY,ANY-method` 23

Index 24

produces a GRanges from gwascat tibble

Description

produce a GRanges from gwascat tibble
bindcadd_snv

Usage

as_GRanges(
 x,
 short = TRUE,
 for_short = c("PUBMEDID", "DATE", "DISEASE/TRAIT", "SNPS"),
 genome_tag = "GRCh38"
)

Arguments

x a tibble from 'get_cached_gwascat()'
short logical(1) if TRUE only keep selected columns in mcols
for_short character() column names to keep in mcols
genome_tag character(1) defaults to "GRCh38"

Description

bind CADD scores of Kircher et al. 2014 to a GRanges instance; by default will use HTTP access at UW

Usage

bindcadd_snv(
 gr,
 fn = "http://krishna.gs.washington.edu/download/CADD/v1.0/1000G.tsv.gz"
)

Arguments

gr query ranges to which CADD scores should be bound
fn path to Tabix-indexed bgzipped TSV of CADD as distributed at krishna.gs.washington.edu on 1 April 2014

Details

joins CADD fields at addresses that match query; the CADD fields for query ranges that are not matched are set to NA

Value

GRanges instance with additional fields as obtained in the CADD resource
Note
This software developed in part with support from Genentech, Inc.

Author(s)
VJ Carey <stvjc@channing.harvard.edu>

References
M Kircher, DM Witten, P Jain, BJ O’Roak, GM Cooper, J Shendure, A general framework for estimating the relative pathogenicity of human genetic variants, Nature Genetics Feb 2014, PMID 24487276

Examples

```
## Not run:
data(ebicat_2020_04_30)
g2 = as(ebicat_2020_04_30, "GRanges")
# would need to lift over here
bindcadd_snv( g2[which(seqnames(g2)="chr2")][1:20] )

## End(Not run)
```

chklocs
return TRUE if all named SNPs with locations in both the SNPlocs package and the gwascat agree

Description
return TRUE if all named SNPs with locations in both the SNPlocs package and the gwascat agree

Usage
chklocs(chrtag = "20", gwwl = gwrngs19)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chrtag</td>
<td>character, chromosome identifier</td>
</tr>
<tr>
<td>gwwl</td>
<td>instance of {gwaswloc}</td>
</tr>
</tbody>
</table>
ebicat_2020_04_30

serialized gwaswloc instance from april 30 2020, sample of 50000 records

Description

serialized gwaswloc instance from april 30 2020, sample of 50000 records

Usage

```
ebicat_2020_04_30
```

Format

```
gwaswloc instance
```

g17SM

SnpMatrix instance from chr17

Description

SnpMatrix instance from chr17

Usage

```
g17SM
```

Format

```
snpStats SnpMatrix instance
```

getRsids

generic snp name retrieval

Description

generic snp name retrieval

Usage

```
getRsids(x)
```

Arguments

```
x gwaswloc
```
getRsids, gwaswloc-method

specific snp name retrieval

Description

specific snp name retrieval

Usage

```r
## S4 method for signature 'gwaswloc'
getRsids(x)
```

Arguments

- `x` : gwaswloc

getTraits

generic trait retrieval

Description

generic trait retrieval

Usage

```r
getTraits(x)
```

Arguments

- `x` : gwaswloc
getTraits.gwaswloc-method

specific trait retrieval

Description

specific trait retrieval

Usage

```r
## S4 method for signature 'gwaswloc'
getTraits(x)
```

Arguments

- `x`: gwaswloc

get_cached_gwascat

use BiocFileCache to retrieve and keep an image of the tsv file distributed by EBI

Description

use BiocFileCache to retrieve and keep an image of the tsv file distributed by EBI

Usage

```r
getCached_gwascat(
  url = "http://www.ebi.ac.uk/gwas/api/search/downloads/alternative",
  cache = BiocFileCache::BiocFileCache(),
  refresh = FALSE,
  ...
)
```

Arguments

- `url`: character(1) url to use
- `cache`: BiocFileCache::BiocFileCache instance
- `refresh`: logical(1) force download and recaching
- `...`: passed to bfcadd

Value

a tibble as produced by readr::read_tsv, with attributes extractDate (as recorded in cache as 'access_time'), and problems (a tibble returned by read_tsv).
Note

will If query of cache with 'ebi.ac.uk/gwas' returns 0-row tibble, will populate cache with bfcadd. Uses readr::read_tsv on cache content to return tibble. The etag field does not seem to be used at EBI, thus user must check for updates.

gg17N
genotype matrix from chr17 1000 genomes

Description
genotype matrix from chr17 1000 genomes

Usage
gg17N

Format
matrix

Examples
data(gg17N)
gg17N[1:4,1:4]

gr6.0_hg38
image of locon6 in GRanges, lifted over to hg38

Description
image of locon6 in GRanges, lifted over to hg38

Usage
gr6.0_hg38

Format
GRanges instance
Description
character vector of rs numbers for SNP on chr17

Usage
gw6.rs_17

Format
character vector

gwascat_from_AHub
grab an image of EBI GWAS catalog from AnnotationHub

Description
grab an image of EBI GWAS catalog from AnnotationHub

Usage
gwascat_from_AHub(tag = "AH91571", simple = FALSE, fixNonASCII = TRUE)

Arguments
 tag character(1) defaults to "AH91571" which is the 3.30.2021 image
 simple logical(1) if TRUE, just returns data.frame as retrieved from EBI; defaults to FALSE
 fixNonASCII logical(1) if TRUE, use iconv to identify and eliminate non-ASCII content

Value
If ‘simple’, a data.frame is returned based on TSV data produced by EBI. Otherwise, non-ASCII content is processed according to the value of ‘fixNonASCII’ and a ‘gwaswloc’ instance is returned, which has a concise show method. This can be coerced to a simple GRanges instance with as(..., "GRanges"). The reference build is GRCh38.

Examples
gwcat = gwascat_from_AHub()
gwcat
gwastagger
GRanges with LD information on 9998 SNP

Description
GRanges with LD information on 9998 SNP

Usage
gwastagger

Format
GRanges

gwaswloc-class
container for gwas hit data and GRanges for addresses

Description
container for gwas hit data and GRanges for addresses

gwcat_snapshot
use AnnotationHub snapshot as basis for gwaswloc structure creation

Description
use AnnotationHub snapshot as basis for gwaswloc structure creation

Usage
gwcat_snapshot(x, fixNonASCII = TRUE)

Arguments

- **x**: inherits from data.frame, with columns consistent with EBI table
- **fixNonASCII**: logical(1) if TRUE, use iconv to replace non-ASCII character, important for CMD check but perhaps not important for applied use
Examples

```r
ah = AnnotationHub::AnnotationHub()
entitytab = AnnotationHub::query(ah, "gwascatData")
cand = names(entitytab)[1]
stopifnot(nchar(cand)>0)
tab = ah[[cand]]
gww = gwascat_snapshot(tab)
gww
length(gww)
```

gwcex2gviz
Prepare salient components of GWAS catalog for rendering with Gviz

Description

Prepare salient components of GWAS catalog for rendering with Gviz

Usage

```r
gwcex2gviz(
  basegr,
  contextGR = GRanges(seqnames = "chr17", IRanges::IRanges(start = 37500000, width = 1e+06)),
  txrefobj = TxDb.Hsapiens.UCSC.hu19.knownGene::TxDb.Hsapiens.UCSC.hu19.knownGene,
  genome = "hg19",
  genesymobj = org.Hs.eg.db::org.Hs.eg.db,
  plot.it = TRUE,
  maxmlp = 25
)
```

Arguments

- `basegr`: gwaswloc instance containing information about GWAS in catalog
- `contextGR`: A GRanges instance delimiting the visualization in genomic coordinates
- `txrefobj`: a TxDb instance
- `genome`: character tag like ‘hg19’
- `genesymobj`: an OrgDb instance
- `plot.it`: logical, if FALSE, just return list
- `maxmlp`: maximum value of -10 log p – winsorization of all larger values is performed, modifying the contents of Pvalue_mlogp in the elementMetadata for the call

Examples

```r
data(ebicat_2020_04_30)
# GenomeInfoDb::seqlevelsStyle(ebicat_2020_04_30) = "UCSC" # no more
GenomeInfoDb::seqlevels(ebicat_2020_04_30) = paste0("chr", GenomeInfoDb::seqlevels(ebicat_2020_04_30))
gwcex2gviz(ebicat_2020_04_30)
```
ldtagr

Description

expand a list of variants by including those in a VCF with LD exceeding some threshold; uses snpStats ld()

Usage

ldtagr(
 snprng,
 tf,
 samples,
 genome = "hg19",
 lbmaf = 0.05,
 lbR2 = 0.8,
 radius = 1e+05
)

Arguments

snprng a named GRanges for a single SNP. The name must correspond to the name that will be assigned by genotypeToSnpMatrix (from VariantTools) to the corresponding column of a SnpMatrix.
tf TabixFile instance pointing to a bgzipped tabix-indexed VCF file
samples a vector of sample identifiers, if excluded, all samples used
genome tag like 'hg19'
lbmaf lower bound on variant MAF to allow consideration
lbR2 lower bound on R squared for regarding SNP to be incorporated
radius radius of search in bp around the input range

Value

a GRanges with names corresponding to 'new' variants and mcols fields 'paramRangeID' (base variant input) and 'R2'

Note

slow but safe approach. probably a matrix method could be substituted using the nice sparse approach already in snpStats

Author(s)

VJ Carey
Examples

```r
cand = GenomicRanges::GRanges("1", IRanges::IRanges(113038694, width=1))
names(cand) = "rs883593"
requireNamespace("VariantAnnotation")
expath = dir(system.file("vcf", package="gwascat"), patt=".*exon.*gz", full=TRUE)
        tf = Rsamtools::TabixFile(expath)
ldtagr( cand, tf, lbR2 = .8)
```

Description

location data for 10000 SNP

Usage

```r
locon6
```

Format

data.frame, coordinates are hg19

Description

get locations for SNP affecting a selected trait

Usage

```r
locs4trait(gwwl, trait, tag = "DISEASE/TRAIT")
```

Arguments

- `gwwl`: instance of `gwaswloc`
- `trait`: character, name of trait
- `tag`: character, name of field to be used for trait enumeration
Description

SnpMatrix instance from chr17

Usage

low17

Format

snpStats SnpMatrix instance

makeCurrentGwascat

read NHGRI GWAS catalog table and construct associated GRanges instance records for which clear genomic position cannot be determined are dropped from the ranges instance an effort is made to use reasonable data types for GRanges metadata, so some qualifying characters such as (EA) in Risk allele frequency field will simply be omitted during coercion of contents of that field to numeric.

makeCurrentGwascat(
 table.url = "http://www.ebi.ac.uk/gwas/api/search/downloads/alternative",
 fixNonASCII = TRUE,
 genome = "GRCh38",
 withOnt = TRUE
)
obo2graphNEL

Arguments

- **table.url** string identifying the .txt file curated at EBI/EMBL
- **fixNonASCII** logical, if TRUE, non-ASCII characters as identified by iconv will be replaced by asterisk
- **genome** character string: 'GRCh38' is default and yields current image as provided by EMBL/EBI; 'GRCh37' yields a realtime liftOver to hg19 coordinates, via AnnotationHub storage of the chain files. Any other value yields an error.
- **withOnt** logical indicating whether 'alternative' (ontology-present, includes repetition of loci with one:many ontological mapping) or 'full' (ontology-absent, one record per locus report) version of distributed table

Value

A slightly extended GRanges instance, with class name 'gwaswloc'; the purpose of the introduction of this class is to support a concise show method that does not produce very long lines owing to large numbers of fields in the mcols component.

Note

'readr::read_tsv' records problems when some records have field contents that are inconsistent with the column specification. This information can be retrieved from the metadata slot of the returned object, as noted in a message produced when this function is run.

Author(s)

VJ Carey

Examples

```r
# if you have good internet access
if (interactive()) {
  newcatr = makeCurrentGwascat()
  newcatr
}
```

convert a typical OBO text file to a graphNEL instance (using Term elements)

Description

convert a typical OBO text file to a graphNEL instance (using Term elements)
Usage

```r
obo2graphNEL(
  obo = "human-phenotype-ontology.obo",
  kill = "\\[Typedef\\]",
  killTrailSp = TRUE
)
```

Arguments

- **obo** string naming a file in OBO format
- **kill** entity types to be excluded from processing – probably this should be in a 'keep' form, but for now this works.
- **killTrailSp** In the textual version of EFO ca. Aug 2015, there is a trailing blank in the tag field defining EFO:0000001, which is not present in references to this term. Set this to TRUE to eliminate this, or graphNEL construction will fail to validate.

Details

Very rudimentary list and grep operations are used to retain sufficient information to map the DAG to a graphNEL, using formal term identifiers as node names and 'is-a' relationships as edges, and term names and other metadata are assigned to nodeData components.

Value

a graphNEL instance

Note

The OBO for Human Disease ontology is serialized as text with this package.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

References

For use with human disease ontology, http://www.obofoundry.org/cgi-bin/detail.cgi?id=disease_ontology

Examples

```r
data(efo.obo.g)
requireNamespace("graph")
hn = graph::nodes(efo.obo.g)[1:5]
hn
graph::nodeData(efo.obo.g, hn[5])
```
process_gwas_dataframe

convert GWAS catalog data.frame to gwaswloc, a GRanges extension with simple show method

Description
convert GWAS catalog data.frame to gwaswloc, a GRanges extension with simple show method

Usage
process_gwas_dataframe(df)

Arguments
df data.frame

riskyAlleleCount given a matrix of subjects x SNP calls, count number of risky alleles

Description
given a matrix of subjects x SNP calls, count number of risky alleles for various conditions, relative to NHGRI GWAS catalog

Usage
riskyAlleleCount(
callmat,
matIsAB = TRUE,
chr,
gwwl,
snpap = "SNPlocs.Hsapiens.dbSNP144.GRCh37",
gencode = c("A/A", "A/B", "B/B")
)

Arguments
callmat matrix with subjects as rows, SNPs as columns; entries can be generic A/A, A/B, B/B, or specific nucleotide calls
matIsAB logical, FALSE if nucleotide codes are present, TRUE if generic call codes are present; in the latter case, gwascat:::ABmat2nuc will be run
chr code for chromosome, should work with the SNP annotation getSNPlocs function, so likely "ch[nn]"
gwwl an instance of {gwaswloc}
snpap name of a Bioconductor SNPlocs.Hsapiens.dbSNP.* package
gencode codes used for generic SNP call
Value

 matrix with rows corresponding to subjects, columns corresponding to SNP

Examples

```r
## Not run:
data(gg17N) # translated from GGdata chr 17 calls using ABmat2nuc
data(ebicat37)
library(GenomeInfoDb)
seqlevelsStyle(ebicat37) = "UCSC"
h17 = riskyAlleleCount(gg17N, matIsAB=FALSE, chr="ch17", gwwl=ebicat37)
h17[1:5,1:5]
table(as.numeric(h17))
```

End(Not run)
subsetByChromosome generic trait subsetting

Description
generic trait subsetting

Usage
subsetByChromosome(x, ch)

Arguments
- `x` : gwaswloc
- `ch` : character vector of chromosomes

subsetByChromosome,gwaswloc-method

specific trait subsetting

Description
specific trait subsetting

Usage

```r
## S4 method for signature 'gwaswloc'
subsetByChromosome(x, ch)
```

Arguments
- `x` : gwaswloc
- `ch` : character vector of chromosomes
subsetByTraits

generic trait subsetting

Description

generic trait subsetting

Usage

subsetByTraits(x, tr)

Arguments

x gwaswloc
tr character vector of traits

subsetByTraits,gwaswloc-method

specific trait subsetting

Description

specific trait subsetting

Usage

S4 method for signature 'gwaswloc'
subsetByTraits(x, tr)

Arguments

x gwaswloc
tr character vector of traits
TopTraits

Description

operations on GWAS catalog

Usage

```r
topTraits(gwsl, n = 10, tag = "DISEASE/TRAIT")
```

Arguments

- `gwsl`: instance of `{gwasloc}`
- `n`: numeric, number of traits to report
- `tag`: character, name of field to be used for trait enumeration

Value

topTraits returns a character vector of most frequently occurring traits in the database.
locs4trait returns a `{gwasloc}` object with records defining associations to the specified trait.
chklocs returns a logical that is TRUE when the asserted locations of SNP in the GWAS catalog agree with the locations given in the dbSNP package SNPlocs.Hsapiens.dbSNP144.GRCh37

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

```r
data(ebicat_2020_04_30)
topTraits(ebicat_2020_04_30)
```

traitsManh

use ggbio facilities to display GWAS results for selected traits in genomic coordinates

Description

use ggbio facilities to display GWAS results for selected traits in genomic coordinates
traitsManh

Usage

traitsManh(
 gwr,
 selr = GRanges(seqnames = "chr17", IRanges(3e+07, 5e+07)),
 traits = c("Asthma", "Parkinson's disease", "Height", "Crohn's disease"),
 truncmlp = 25,
 ...
)

Arguments

 gwr GRanges instance as managed by the gwaswloc container design, with Disease.Trait and Pvalue_mlog among elementMetadata columns
 selr A GRanges instance to restrict the gwr for visualization. Not tested for noncontiguous regions.
 traits Character vector of traits to be exhibited; GWAS results with traits not among these will be labeled "other".
 truncmlp Maximum value of -log10 p to be displayed; in the raw data this ranges to the hundreds and can cause bad compression.
 ... not currently used

Details

 uses a ggbio autoplot

Value

 autoplot value

Note

 An xlab is added, concatenating genome tag with seqnames tag.

Author(s)

 VJ Carey <stvjc@channing.harvard.edu>

Examples

 # do a p-value truncation if you want to reduce compression
 ## Not run: # ggbio July 2018
 data(ebicat_2020_04_30)
 library(GenomeInfoDb)
 seqlevelsStyle(ebicat_2020_04_30) = "UCSC"
 traitsManh(ebicat_2020_04_30)

 ## End(Not run)
[,gwaswloc,ANY,ANY,ANY-method

extractor for gwaswloc

Description

extractor for gwaswloc

Usage

S4 method for signature 'gwaswloc,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

Arguments

- x: gwaswloc
- i: index
- j: index
- ...: addtl indices
- drop: logical(1)
Index

* datasets
 ebicat_2020_04_30, 5
 g17SM, 5
 gg17N, 8
 gr6.0_hg38, 8
 gw6.rs_17, 9
 gwastagger, 10
 locon6, 13
 low17, 14
 si.hs.37, 18
 si.hs.38, 18
* graphics
 gwceX2Gviz, 11
 traitsManh, 21
* models
 bindcadd_snv, 3
 ldtagr, 12
 makeCurrentGwascat, 14
 obo2graphNEL, 15
 riskyAlleleCount, 17
 topTraits, 21
 traitsManh, 21
 [,gwaswloc,ANY,ANY,ANY-method, 23
 as_GRanges, 2
 bindcadd_snv, 3
 chklocs, 4
 ebicat_2020_04_30, 5
 efo.obo.g (obo2graphNEL), 15
 g17SM, 5
 get_cached_gwascat, 7
 getRsids, 5
 getRsids, gwaswloc-method, 6
 getTraits, 6
 getTraits, gwaswloc-method, 7
 gg17N, 8
 gr6.0_hg38, 8
 gw6.rs_17, 9
 gwastagger_from_AHub, 9
 gwastagger, 10
 gwaswloc-class, 10
 gwaswloc_snapshot, 10
 gwceX2Gviz, 11
 ldtagr, 12
 locon6, 13
 locs4trait, 13
 low17, 14
 makeCurrentGwascat, 14
 node2uri (obo2graphNEL), 15
 obo2graphNEL, 15
 process_gwas_dataframe, 17
 riskyAlleleCount, 17
 si.hs.37, 18
 si.hs.38, 18
 subsetByChromosome, 19
 subsetByChromosome,gwaswloc-method, 19
 subsetByTraits, 20
 subsetByTraits,gwaswloc-method, 20
 topTraits, 21
 traitsManh, 21
 uri2node (obo2graphNEL), 15