Contents

1 Overview

This vignette is an introduction to the usage of pareg. It estimates pathway enrichment scores by regressing differential expression p-values of all genes considered in an experiment on their membership to a set of biological pathways. These scores are computed using a regularized generalized linear model with LASSO and network regularization terms. The network regularization term is based on a pathway similarity matrix (e.g., defined by Jaccard similarity) and thus classifies this method as a modular enrichment analysis tool (Huang, Sherman, and Lempicki 2009).

2 Installation

if (!require("BiocManager", quietly = TRUE)) {
  install.packages("BiocManager")
}
BiocManager::install("pareg")

3 Load required packages

We start our analysis by loading the pareg package and other required libraries.

library(ggraph)
library(tidyverse)
library(ComplexHeatmap)
library(enrichplot)

library(pareg)

set.seed(42)

4 Introductory example

4.1 Generate pathway database

For the sake of this introductory example, we generate a synthetic pathway database with a pronounced clustering of pathways.

group_num <- 2
pathways_from_group <- 10

gene_groups <- purrr::map(seq(1, group_num), function(group_idx) {
  glue::glue("g{group_idx}_gene_{seq_len(15)}")
})
genes_bg <- paste0("bg_gene_", seq(1, 50))

df_terms <- purrr::imap_dfr(
  gene_groups,
  function(current_gene_list, gene_list_idx) {
    purrr::map_dfr(seq_len(pathways_from_group), function(pathway_idx) {
      data.frame(
        term = paste0("g", gene_list_idx, "_term_", pathway_idx),
        gene = c(
          sample(current_gene_list, 10, replace = FALSE),
          sample(genes_bg, 10, replace = FALSE)
        )
      )
    })
  }
)

df_terms %>%
  sample_n(5)
##        term       gene
## 1 g1_term_9 g1_gene_12
## 2 g1_term_5  g1_gene_7
## 3 g2_term_2  g2_gene_2
## 4 g1_term_3 bg_gene_47
## 5 g1_term_8  g1_gene_1

4.2 Term similarities

Before starting the actual enrichment estimation, we compute pairwise pathway similarities with pareg’s helper function.

mat_similarities <- compute_term_similarities(
  df_terms,
  similarity_function = jaccard
)

hist(mat_similarities, xlab = "Term similarity")

We can see a clear clustering of pathways.

Heatmap(
  mat_similarities,
  name = "Similarity",
  col = circlize::colorRamp2(c(0, 1), c("white", "black"))
)

4.3 Create synthetic study

We then select a subset of pathways to be activated. In a performance evaluation, these would be considered to be true positives.

active_terms <- similarity_sample(mat_similarities, 5)
active_terms
## [1] "g2_term_6" "g2_term_3" "g2_term_3" "g2_term_2" "g2_term_8"

The genes contained in the union of active pathways are considered to be differentially expressed.

de_genes <- df_terms %>%
  filter(term %in% active_terms) %>%
  distinct(gene) %>%
  pull(gene)

other_genes <- df_terms %>%
  distinct(gene) %>%
  pull(gene) %>%
  setdiff(de_genes)

The p-values of genes considered to be differentially expressed are sampled from a Beta distribution centered at \(0\). The p-values for all other genes are drawn from a Uniform distribution.

df_study <- data.frame(
  gene = c(de_genes, other_genes),
  pvalue = c(rbeta(length(de_genes), 0.1, 1), rbeta(length(other_genes), 1, 1)),
  in_study = c(
    rep(TRUE, length(de_genes)),
    rep(FALSE, length(other_genes))
  )
)

table(
  df_study$pvalue <= 0.05,
  df_study$in_study, dnn = c("sig. p-value", "in study")
)
##             in study
## sig. p-value FALSE TRUE
##        FALSE    34   17
##        TRUE      1   28

4.4 Enrichment analysis

Finally, we compute pathway enrichment scores.

fit <- pareg(
  df_study %>% select(gene, pvalue),
  df_terms,
  network_param = 1, term_network = mat_similarities
)
## + /var/cache/basilisk/1.16.0/0/bin/conda create --yes --prefix /var/cache/basilisk/1.16.0/pareg/1.8.0/pareg 'python=3.9.12' --quiet -c anaconda
## + /var/cache/basilisk/1.16.0/0/bin/conda install --yes --prefix /var/cache/basilisk/1.16.0/pareg/1.8.0/pareg 'python=3.9.12' -c anaconda
## + /var/cache/basilisk/1.16.0/0/bin/conda install --yes --prefix /var/cache/basilisk/1.16.0/pareg/1.8.0/pareg -c anaconda 'python=3.9.12' 'tensorflow=2.10.0' 'tensorflow-probability=0.14.0'

The results can be exported to a dataframe for further processing…

fit %>%
  as.data.frame() %>%
  arrange(desc(abs(enrichment))) %>%
  head() %>%
  knitr::kable()
term enrichment
g2_term_6 -0.6759553
g2_term_3 -0.6003887
g2_term_2 -0.5817953
g2_term_4 -0.4232832
g2_term_8 -0.4122331
g1_term_2 0.3979995

…and also visualized in a pathway network view.

plot(fit, min_similarity = 0.1)